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BASIC COURSE OF LINEAR ALGEBRA
AND ANALYTICAL GEOMETRY

Teaching guide

In this textbook the authors explain the basic concepts, the most
important theoretical material and some guides to the problem solving
for the course of linear algebra and analytical geometry. A book may
help the foreign students to learn this course on their first year of study
at Moscow Power Engineering Institution. The text contains basic defi-
nitions, formulae and principal laws of linear algebra and analytical ge-
ometry. The typical problems for each theme are described in detail and
solved. After most of the chapters there are review questions and prob-
lems for the students that they should solve themselves. To make the
studies more interesting, the facts from the history of mathematics and
some creative tasks for the students are also included into this teaching
guide. The main aim of this textbook is to explain the basic concepts of
linear algebra and analytical geometry, to help the students in develop-
ing the skills of solving the problems and to help them in making their
first steps in working with the mathematical software. The chapters of
this teaching guide contatin three big themes — ‘Introduction to matrix
theory. Systems of linear equations’, ‘Analytical geometry’ , ‘Linear
spaces and linear operators’. Some basic problems from the theme ‘In-
troduction to matrix theory’ are solved in Mathcad program; they are
given in chapter 4. That helps the students to get acquainted with
Mathcad software and responds the challenges of the practical branch of
education because it is important for the students to learn how to work
with specialized software and to practice their digital skills.

This teaching guide can be recommended as the basic textbook
for the students of NRU ‘MPEI’ in English-speaking groups, and it also
can be used as the additional teaching guide for all the technical special-
ties of the university.



INTRODUCTION

Linear algebra is one of the most important branches of
Higher mathematics. We cannot imagine the modern life, with its
digital challenges, without the concepts of a matrix theory that
helps the computers to work with huge arrays, to organize the data,
to build complicated mathematical models. Discovered in ancient
times, the methods of solving the systems of linear equations help
us to solve different problems nowadays almost in each sphere of
our everyday life.

First textbooks in English on different courses of Higher mathe-
matics were published by Nabebin A.A. in 1990s, however, since then
at MPEI there were no full teaching guides dedicated to all the themes
investigated in the course of linear algebra. The authors of this book of-
ten hear the requests from the students who come to Moscow Power
Engineering University from the other countries — to find a good text-
book in English which can help their studies easier. A language bareer
is a typical problem for almost each student from the other country, so
the authors have chosen the English language for their teaching guide
(as the most ‘universal’ and widely-spread one) and they try to explain
all the basic concepts of linear algebra in a clear and understandable lan-
guage.

The course of linear algebra and analytical geometry intro-
duced in this book, helps the students to learn the basic theoretical
material, to practice solving the typical problems of the course.
They can check themselves by the review questions (mostly they
help the students to repeat the material of the previous paragraph in
order to develop their skills of oral answers and to concentrate on
the basic terms introduced in the theme). Some useful terms from
each paragraph are introduced in Russian, and that helps the stu-
dents from the other country to get acquainted with the special terms
they will definitely meet in their future studies and to improve their
vocabulary of Russian language. If the students have real interest in
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mathematics, they can read the inspiring biographies of great math-
ematicians and interesting facts about the history of mathematics.
The authors hope that the students will enjoy the creative tasks that
can help the students in developing their skills and knowledge and
enjoy the educational process at the same time. And, of course, as
the concept of a ‘digital textbook’ becomes increasingly popular,
there is a simple and understandable guide for solving some basic
problems of the matrix theory in chapter 4.

The authors hope that the process of learning the course of linear
algebra will be an exciting journey into the world of Higher mathematics
and wish all the students good luck in their future studies!



1. INTRODUCTION TO MATRIX THEORY.
SYSTEMS OF LINEAR EQUATIONS

1.1. Matrices. Main definitions

A matrix is definitely a first thing to be introduced in the matrix
theory. You have probably heard about it before. A matrix is a unique
object that plays a significant role not only in mathematics but also in
many other fields of science. Firstly we need it when we have to solve a
complicated system of linear equations. Let us investigate matrices in
terms of linear algebra.

A matrix is a rectangular array of numbers or symbols. (Some-
times a matrix can even include expressions). The most important parts
of the matrix are rows and columns.

A row is an array of matrix elements arranged as a single horizon-
tal line; @ column is an array of matrix elements arranged as a single
vertical line. Let us look at the example of a typical matrix.

ai; Q2 A1n

a1 Q22 az1
A=

Am1 Az - Qmn

Each element of the matrix has its own index. It consists of 2 numbers:
the first number indicates the row number of the element and the second num-
ber indicates the column number of this element. Further in the common form
we would denote the element of a matrix A4 as a; where the index i indicates
the row number and ; indicates the column number.

So we can see the detailed description of any unspecified matrix.

This matrix A4 is called a matrix of dimension m X _n or just m X
n matrix (we should read it as ‘m by n’) as it has m rows and # columns.

There are many interesting private cases of matrices. One of the
most useful examples is a square matrix. The number of rows in a
square matrix is equal to the number of its columns. (For example, 2x2,
3 x 3,4 x 4...n X n matrices). Speaking about the square matrix, we
introduce the term of a diagonal.

10



111 ) a row
_| [B21] Y22
Am1| Amz "
a column

row index

The main diagonal of a matrix is an array of matrix entries where
the row index is equal to the column index, e.g. a1, @z, ... dm. SO We can
really see they are standing on the diagonal line from the upper left to
the lower right corner of a matrix. It is also sometimes called major di-
agonal, principal diagonal, primary diagonal or leading diagonal.

The secondary diagonal of a square matrix (let us take m Xm matrix
for our example) is an array of entries a;where i +; =m + 1. It is a diagonal
line coming from the upper right corer to the lower left corner. It is also
sometimes called counter diagonal, trailing diagonal, antidiagonal or
even bad diagonal (although the authors consider that all the mathematical
objects are good!). Let us investigate the 3%3 matrix 4:

ai; Q12 Q433
A=Az Qaz2 a3

asz; a4z dass

We can see that ai1, a», ass are entries of the main diagonal (the
row index is equal to the column index in those entries) and ai3, a», as
are entries of the secondary diagonal. The dimension of our matrix is
3%3 so the sum of row index and column index of the entry on a second-
ary diagonal should be equal to 4. So we can easily check that this con-
dition is fulfilled with aiz, A, asl .

One of the interesting cases is a zero matrix: a matrix that
has all the elements equal to zero. You can look at the example of

a zero matrix M:
0 0 0
M = (O 0 0)
0 0 O
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Another important case is a diagonal matrix: a square matrix that
has all the non-zero entries standing on the main diagonal while the other
elements of this matrix are equal to zero. Below we give the example of

a diagonal matrix B.
2 00
B = (0 5 0>
0 0 7

One of the private cases of a diagonal matrix is the identity ma-
trix: a square matrix, which has the only number 1 on the main diagonal;
the other entries are equal to zero. Below we can see the 3x3 identity
matrix I (usually we denote the identity matrix by this letter).

1 0 0
I=(0 1 0
0 0 1

We can also investigate the vectors — the matrices which have
only one column or one row. A row vector consists of only one row and
a column vector consists of only one column. Below we see the example
of a row vector D and a column vector F.

D= (d11 d12 "'dln)
f11
F = f21

fnt

We can see that the row vector D has a dimension / Xz and a col-
umn vector F has a dimension m % /.

History is a great teacher! The first matrix-like structures were
described in Ancient China. The book ‘The Nine Chapters on the Math-
ematical Art’ (written by several generations from 10-th century BCE to
the 2-nd century BCE) was the first document that told us about the
‘equations’ similar to modern simultaneous linear systems of equations.
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The solution method called ‘Fang §] TJ&‘.’ _Iil'?*[- 1%
Cheng Shi’ was a matrix method of F ; -IE. fi f‘;ﬁj
solving the systems of linear equations -;’“' ?}ﬁ E Ji: & g;’;ﬁ
known today as Gaussian elimination ¢ f = 'ﬂti s ;fl '1
(we will talk about it later in the i [%%11‘3{ ‘%-f
course). However, a Genevan mathe- §| | 7 i_—: i
matician Gabriel Cramer (1704-1752) ;i & }\ ? |
and a German mathematician Carl %|— & i
Friedrich Gauss (1777—1855), with = Xk
their methods of solving the linear —I‘: = ‘ff _i /d
equations, made a great contribution to g; _:_}‘ lll ‘:i Jff e
forming a matrix theory only in the 18- ﬁ___]_l!r_ﬁ[*_ L )
th century — more than a thousand A page from
years after the investigations in An- ‘Nine Chapters on the
cient China. The theory was developed Mathematical Art’

in the 19-th and the 20-th century, and
it got many useful applications.

Creative task Find the information about the fields of science,
everyday life or technology where the matrices are useful nowadays.

Make a short report (not more than 2 minutes!)

Practice Russian

Martpuna — a matrix

Ctpoka — a row

Croa6én — a column

Juaronanasn — a diagonal

KpaapaTrnas maTpuua — a square matrix
Enunnynas maTpuna — an identity matrix

Review questions

1. What is a matrix? What types of matrices have you learned?

2. Describe an algorithm of matrix elements’ numeration

3. What is a vector? Compare your previous knowledge about

vectors (from school course of mathematics) and the new definition

13



1.2. Addition of matrices. Multiplication by a scalar

There is a range of operations we can do with matrices. Let us get
acquainted with the process of matrix addition — it is very simple!
For our example we take 2 matrices, 4 and B.

ai1 Q12 Qg3 b1y b1z bi3
A=[a1 az azs B =|by1 by by (D
az1 Az daszz b3y b3y bss

We need to calculate the matrix C which will be the sum of
those two matrices. So we need to take two members with both same
row and column indexes from the matrices 4 and B, add the entry of
a first matrix to the entry of a second matrix and put the result to the
place of the entry with the same row and column index in the new
matrix C. So a; + bij = cjj.

aq1+ by @iz + by agz+ by
C = A + B = a21 + bz]_ azz + b22 a23 + b23 =
azq + b3y az; + b3y asz+ bss

€11 C12 (13
=|Ca1 C22 C23
C31 C32 (33

We can also subtract one matrix from the other matrix using the
same rule.

a1y —by1r a1z — b1z ag3 — by3
D=A-B= (‘121 — by Ay — by azz;— bzs) =
Az — b3y az; —bzy;  azz — bss
di1 dyp diz
= <d21 dzz dzs)

d31 d32 d33

Another simple operation is multiplication by a scalar. A scalar
is a real number. So when we multiply a matrix by a scalar, we multiply
each entry of matrix by this scalar and we put this entry multiplied by
this scalar to the proper place of a resulting matrix.

14



For example, if we have a scalar A and multiply it by the matrix
A (see the matrix 4 in (1)):

Aaq1 Aaq;  Aaqs
X = M - (7\Cl21 )kazz 7\(123)
Aas; Aasp; Adss

Let’s come to some practical examples.
So we need to evaluate the matrix C. We add the entries with the
same indexes in both matrices, 4 and B, and put the result into the new

matrix.
3 2 1 1 -2 0
C=<0 -1 4>+<4 5 7>=
1 2 6 8 -9 10
341 2-2 140 4 0 1
=(0+4 —1+5 4+7>=(4 4 11)
148 2—-9 6+10 9 -7 16
4 0 1
So C=<4 4 11).
9 -7 16

1. Subtract the matrix B from the matrix 4 (see the matrices in
the previous task). Put the result into the matrix D.

We take the entries with the same indexes in both matrices, 4 and
B, and subtract the entries of the matrix B from the corresponding entries
of the matrix 4 and put the result into the new matrix.

3 2 1\ (/1 -2 0
D=<0 -1 4)—(4 5 7)=
1 2 6/ \8 =9 10
3-1 242 1-0
=(0—4 -1-5 4—7>=
1-8 2+9 6-10
2 4 1
=<—4 -6 —3)
~7 11 -4

2 4 1
So D = (— 4 -6 —3).
-7 11 -4

15



2. Multiply the matrix 4 from the previous tasks by a scalar
A=5.
We multiply each entry of the matrix 4 by a scalar A=5.
3 2 1 3-5 25 1-5
X=2MA=5-{0 -1 4 =<0-5 -1-5 4-5)

1 2 6 1-5 25 6-5

15 10 5
= ( 0 -5 20)
5 10 30
15 10 5
So X = ( 0 -5 20).
5 10 30
Practice Russian
Crnoxénue maTpuu — matrix addition

Boruntanue MaTpun — matrix subtraction
YMmHoxénne Ha yucao — multiplication by a scalar

Review questions

1. Describe the algorithm of matrices’ addition.

2. Is the addition of matrices commutative? (Is the following ex-
pression true: 4 + B=B+ A7)

3. Describe the algorithm of multiplication by a scalar

Practical tasks
Choose your variant and solve the task.

1. Add matrix A to the matrix B and put the result into the matrix C.

4 6 -1 6 -5 7
I.LA=|0 -2 3 B = (3 8 —3)

7 3 9 5 -1 1

-1 5 9 8 -1 —4
2.A= ( 6 =5 7) B={2 -7 2

5 -4 0 9 5 6

3 2 1 1 -2 0
3.A=<0 -1 4> B=<4 5 7>

1 2 6 8 -9 10
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1. Subtract matrix B from the matrix 4 and put the result
into the matrix C. Take the matrices from the previous task.

2. Multiply the matrix A (see task 1) by a scalar i. Take the
matrix 4 from task 1. The scalars are given below.

Variant number A
1 3
2 -2
3 5
4 4
5 8
6 7
7 6
8 -5
9 10
10 2
11 -8
12 -4
13 —7
14 9
15 -3

1.3. Matrix multiplication

We have already learned how to multiply a matrix by a scalar — but
what do we have to do when we need to multiply one matrix by the other
one? Sometimes we need to multiply three or even more matrices at once. ..

First of all, we need to multiply the matrices consequently: firstly
we multiply the first matrix by the second one, then the new resulting
matrix is multiplied by the third one and so on. So the main algorithm
we need is multiplication of two matrices.

To multiply two matrices we should remember the ‘magic spell’:
‘Row by column and take the sum’. What does that mean?

For example, we have two matrices 4 and B:

ai; Q12 Ain byy by bin
az1 Ay azi b b b

g = B= 21 22 21
AGm1  Am2 Amn bml me bmn



So we need to get the matrix C. Let us look at the entry of the new
matrix c;; (for the common form we use the entry in the i-th row and the
j-th column) and the algorithm of its evaluation:

Cij = Clﬂb]_j + ai2b2j + ai3b3/' + ...+ ainbnj

We take the whole i-th row and the whole j-th column and multi-
ply the first entry in the row by the first entry in the column, the second
entry in the row by the second entry in the column and so on. So after
multiplying all the corresponding members in one row and one column,
we need to get a sum of all those pairwise products.

Let us look at the concrete example of the 3x3 matrices.

aj; Qi Ag3 bi1 bz by
A=Az Qaz2 Aaz3 B =|by; by by
az; a3z dass b3y bs, bs3

To get c11 we take the first row of matrix 4 and the first column
of matrix B.
cit = aubn + annban + aizbs

To get c12 we take the first row of a matrix 4 and the second col-
umn of the matrix B.
ci2 = anba + anbxn + aizby

To get c23 we take the second row of a matrix A4 and the third col-
umn of a matrix B:
cn=anbiztanbitanbs;

It is important to mention that when we need to multiply two ma-
trices, the number of rows in the first matrix should be equal to the num-
ber of columns in the second matrix.

Useful advice! For the first time you should write the resulting
matrix you are going to get (in the common form). For example, we need
to get 3x3 matrix C as a product of two 3 %3 matrices 4 and B given

above:
€11 C12 (13
C = <C21 C22 Cz3>
€31 C32 (33
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You should tell the algorithm to yourself: firstly I need to get the
entry ci1. The row index of this entry is 1 so I take the first row of the
first matrix A; the column index is also 1 so I take the first column of
the matrix B. I multiply the first entry of the first row in the matrix 4
by the first entry of the first column in the matrix B. Then I multiply the
second entry of the first row in the matrix 4 and the second entry of the
first column in the matrix B (don’t forget we are still working with the
same row and column until we come to the last entries there). Then we
repeat the procedure with the third entry in the first row of 4 and the
third entry in the first column of B. I add the products of those first en-
tries to the product of the second entries, get the result and then after-
wards I add the product of the third entries. So we see that when the last
entry of the first row and the last entry of the first column are pairwise
multiplied and added to the other pairwise products for this row and this
column, we come to the next entry of the resulting matrix C.

The next entry is ci2. So your words should sound like this: the
row index is 1 so I take the first row of 4 and the column index is 2 so
I take the second column of the matrix B. Then all the operations de-
scribed above should be repeated with the entries of the first row in 4
and the second row in B.

So two indexes of the new resulting matrix can help you to define the
necessary row and columns in which the entries should be pairwise multiplied
and then the sum of those pairwise products should be calculated.

It’s important! When you calculate the product of two real num-
bers, you get used to the commutativity law: ab = ba. Let us check
whether this law is fulfilled for two matrices. So we have two 2 x2 ma-
trices, A and B and we should check whether 4-B = B-A:

4=(; 3) =0 §)
So using the rule of multiplication, we get the matrix C= 4B
c=a5=(3 3G §)-

(Geti7 3eva9=0Gs =0
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Then let us try to evaluate the matrix D = B-4. We should check
whether C = D or not.

(5 6\(1 2\ _

D_BA_(7 8)(3 4)_
(5-1+6~3 5-2+6-4)=(23 34)
7-1+8-3 7-2+8-4 31 46

So we can conclude that the multiplication of matrices is not com-
mutative: 4-B # B-A.

Remark There are some private cases when A-B = B-A. The
easiest way to illustrate one of those cases is to take two matrices of
the same dimension where all the entries would be the same:

a) A:(1 1) B:(1 1) A-B=BA

11 11
b)A=(g g)3=(g g) A-B=B-A

One-minute task Your task is to check those cases and calculate
the products 4-B and B-A4 in cases a) and b).

We can also multiply more than two matrices but it is necessary
to check their dimension!
For example, we have to multiply three matrices:

1 2y (2 3\ (3 4
(2 3)'(3 4)'(5 6)
We remember that we can’t speak about the commutativity so we
need to multiply the matrices consequently: the first matrix by the sec-
ond matrix. Then the resulting matrix of those two is multiplied by the

third matrix.
So we have:

2 G DG -G53 23130 G -
=(8 11)(3 4)_(8-3+11-5 8-4+11-6)

13 18/\5 6/ \13-3+18-5 13-4+18-6
(79 98)
129 160
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Creative task Now you can play the game. The student who be-
gins the game should write any 2 x2 matrices to the student sitting next
to him/her and that second student should calculate the product of those
matrices. Then the second student puts down the resulting matrix and
then invents any new matrix he would like to write down. So the third
student multiplies the previous resulting matrix (calculated by the sec-
ond student) by the new matrix invented by the previous student. After
putting down the new resulting matrix, the third student invents another
matrix for the next student to multiply that new resulting matrix by the
invented one. So the last student in the chain gives to the first student
(who has begun the game) the matrix that he has got as the result of
multiplication plus his own one. So the first student calculates the prod-
uct and has to finish the game. You are allowed to use the calculator
during the game: the numbers can be really impressive, especially for
the last students in the chain.

Practice Russian

YMmuoxénne MaTpun — matrix multiplication

Review questions

1. Describe the algorithm of matrix multiplication

2. Is the multiplication of matrices commutative?

3. Give your own examples of the private cases when A-B = B-4

Practical task

All the matrices for this task are already given above in the prac-
tical task 1 after the paragraph 1.2. However, this time you need to take
the variant which comes after your own one: for example, if you have
variant 1, you need to take variant 2 and so on; variant 15 should take
the variant 1.

1. Multiply the matrix 4 by the matrix B and put the result

into the matrix C. Then multiply the matrix C by the 3x3 identity
matrix /.
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1.4. Determinants of matrices

The determinant of a matrix is a useful mathematical object that
helps us to solve complicated systems of linear equations; it is also
widely used in analytical geometry (its application will be investigated
later in our course). A determinant is a special number that can be eval-
uated from a square matrix.

Remark Don’t forget that we work only with square matrices
when we talk about calculation of a determinant!

So let us see how we can work with the determinants of matrices.
We can have a look at the 3x3 matrix A4.

a1 Q12 4g3
A=|0Gz1 G2 a3
az1 dzz 4zs
When we calculate the determinant of a matrix, first we put our

matrix in straight lines (like the modulus sign). The denotation for the
determinant of the matrix 4 is given below:

a1 Q2 4i3
a1 dzz dz3
a3z1 dzz dz3

det A= |A| =

We need to calculate the value of this determinant.
1) The determinant of 2x2 matrix
For example, we have the 2x2 matrix B:

2 6
Bl =] ]
Step 1 We multiply the elements of the main diagonal and get the
result: 2-1=2
Step 2 We multiply the elements of the secondary diagonal and
get the result: 6:7 =42
Step 3 We subtract the product of the secondary diagonal’s ele-

ments from the product of the main diagonal’s elements: 2 — 42 = —40.
So the value of the determinant for the matrix B is |B| = — 40.
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2) The determinant of a 3x3 matrix

The case of a determinant for a 3x3 matrix is very popular among
the practical tasks for students. Moreover, it is a unique case of a deter-
minant which has two convenient methods of evaluation. One method is
rather universal and can be used for matrices with a higher dimension;
the second one is used only for 3x3 matrices.

2.1. The row /column expansion method

Let us investigate the matrix D and its determinant:

1 2 3 1 2 3
D=(4 7 -1])ID|=4 7 -1
2 6 1 2 6 1

Firstly, we need to introduce the definition of minors. What is a minor
and how can we get it? Let us learn the rule. We take one entry of a matrix
(in most cases we start from the very beginning so we take di; = 1) and in our
imagination we remove the whole row and the whole column where this entry
is situated and take the four numbers that remain untouched as a new deter-

minant. In our case the minor for di; is |Z _11 |

However all the minors have the signs ‘+’ or ‘—° and we put
them chequerwise. For the minor of the first entry (in the scheme
below its sign stands in the very first position) — in our case this
entry is dii- we always put ‘+’, then for the minor of the next entry
— for us this entry is di» — the sign changes for ‘—‘. For the second
element in the first column the sign also is ‘—*: if we investigate two
elements standing next to each other, no matter in the row or in the
column, the signs of their minors will always be different. In the
scheme below we see the sign of each minor stands in the position
of the element for which this minor is evaluated. We can see that
for the elements in odd rows the signs of the minors begin with ‘+’;
for even rows the signs begin with ‘)

+ -+ - 4+ - 4+ -
-+ -+ - + - +
+ - + - 4+ - 4+ -
-+ -+ - + - +
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So you can guess that we can put our minors into a special array.
It is called the adjoint matrix and, if we speak about the given matrix D,
the adjoint matrix is denoted as D". Let us put all the minors of all the
entries there (we will denote the minor of the element d;; as M;;). This
matrix is given below (pay attention to the signs!):

6 ‘1| - 3L
My My My e 12

=My My M -2 Y I

2 1 2 6
M3, Mz, Mz \2 1 3 1 2/

| —1| _|4 —1| |4 7|

Now let us come to the row/column expansion method. It can be used
for 3x3 matrices as well as for matrices of higher dimension. For determinant
evaluation we should take any row or column of the determinant |D).

For the row expansion we have a standard formula (the common
form for the i-th row in the matrix with n columns):

|D| = din"Mn+ dpMp+...+ dinMin

o

For the column expansion we have a standard formula (the com-
mon form for the j-th column in the matrix with s rows)

|D|=d1j'M1j+d2j‘M2j+. . .+dstsj

Let us take the first row of our given matrix D. The formula for
calculation of a determinant is given below:

|D| = duM + dixMiz + disMis

Let us put the concrete numbers and symbols from the matrix D
and the adjoint matrix D" (we should calculate the minors as a determi-
nant of a 2x2 matrix):

7 —
D=ty SRRk
=1(7'1-(16))—2-(41 —(-1-2)) +3- (4 6-7 2)— 13 -12+30=31

1| 2|4-

Let us check whether this algorithm works for the column expan-
sion. So we can take the third column and put down the formula:

|D| = disMy3+ dosMos + ds3Ms;
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When we take the concrete numbers we get:

4 7 1 2,1 2
= . — (— . _|._ . —
1P 3|2 6 (1)|2 6| 1|4 7
=3-(46-72)+1:(1-6-22) + 1:(1-7-2:4) =30+ 2 — 1 =31

So we proved that the value of a determinant remains the same —
no matter whether we take the row expansion or column expansion. We
can work with any row or column in the matrix — it’s important to pay
attention to the minors’ signs.

2.2. The triangle method

We use this method only for the calculation of a 3 X3 matrix de-
terminant. We take the matrix D from the previous example.

12 3 12 3
D=(4 7 -1]ID|=|4 7 -1
2 6 1 2 6 1

Step 1. We take the main diagonal and multiply all three entries
standing there: d1'dxn'd3z=1-7-1=17

3
D] = |4 -1
2 6

Step 2. We form the first triangle. If a main diagonal can be pre-
sented as a straight line, then we take the parallel line to it. We see there
are two parallel lines: the line with entries di> = 2 and d>3 = —1 and the
line with entries d>1 = 4 and ds, = 6. It doesn’t matter whether we take
the parallel line above the main diagonal or below the main diagonal for
the first triangle — so let us take the line above. We need to make a tri-
angle so we need to find the third distant point in the corner of a matrix
(if we consider one entry to be a triangle-apex) for all the triangle apexes
on that straight line: di» = 2 and d>3 = —1. As the straight line is in the
upper right corner of a matrix, the third apex should be in the lower left
corner of a matrix and it is d3;. We multiply all three entries that form
the triangle: di2'dos-d31 =2-(-1)-2 =—4
1 3

4 1
6 1

ID| =
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Step 3. We form the second triangle. We take the parallel line of
entries lying below the main diagonal: d»1 = 4 and ds» = 6. Then we
should look for the third apex. The line is situated in the lower left corner
of a matrix so the third triangle apex should be in the upper right corner:
diz = 3. We multiply all the entries that form the second triangle:

dar-dydiz=463="72
1 2_7-3
<7/
2 1

Step 4. We add all the products: the product of the main diago-
nal’s entries, the product of the first triangle’s entries and the product of
the second triangle’s entries:

dii-dy-dss + dirdads + doididiz =
— (17 )+ Q-(1)2) + (463) =7 —4+72=75

ID| =

Step 5. We take the secondary diagonal and multiply all three en-
tries standing there: di3-dxy-d31 =3-7-2 =42

Step 6. We form the third triangle. We take the parallel lines to
the secondary diagonal. We see there are two parallel lines: the line with
entries di» = 2 and d»; = 4 and the line with entries d»>3 =—1 and d3 = 6.
As well as for the main diagonal, it doesn’t matter whether we take the
parallel line above the main diagonal or below the main diagonal for the
third triangle — so let us take the line above with the entries di» and da;.
As the straight line is in the upper left corner of a matrix, the third apex
should be in the lower right corner of a matrix and it is d33. We multiply
all three entries that form the triangle: di>*d»1-ds; = 2-4-1 = 8.

1 3
-1
2 6 1
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Step 7. We form the fourth triangle. We take the parallel line of
entries lying below the secondary diagonal: d»; = —1 and d3 = 6. The
line is situated in the lower right corner of a matrix so the third triangle
apex should be in the upper left corner: di; = 1. We multiply all the en-
tries that form the second triangle: dxs-d3-diz =—-1-6-1=-6
1.2 3

4%\71
2 1

Step 8. We summarize the product of the secondary diagonal’s
entries, the product of the third triangle’s entries and the product of the
fourth triangle’s entries:

dizdydsi + dirdardsztddsrdin =
—(3:7-2)+ (24 1)+ (1)6:1) =42+ 8 — 6= 44

ID| =

Step 9. We subtract the product that we’ve got in step 8 from the
product we’ve got in step 4 (the sum of the secondary diagonal’s entries
product and the products that refer to the third and fourth triangles are
subtracted from the sum of the main diagonal’s entries product and the
products that refer to the first and the second triangles) and get the de-
terminant value:

So let us calculate the value of a determinant |D]:

|D| = dii-dandss + diados-dsi + dai-dsrdiz —
— (di3drnds1 + diydadss + dosdiacdi) =
= didandss + dirdasdsy + dardsadiz —
— dydyds1 — dada-dss — dyedsrrdi =75 — 44 =31

Now we see that both methods of row/column expansion and the
triangle method give us the same results.

Practice Russian

Omnpeneauresib (1eTepMHUHAHT) MATPUIbI— determinant of a
matrix

Métona pa3ioxkéHus Mo CTpPoké/cToaduy — row/column expan-
sion method

Méton TpeyréanuukoB — the triangle method
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Review questions

1. Describe the algorithm of determinant calculation for 3x3 ma-
trix(row/column expansion method)

2. Describe the algorithm of determinant calculation for a 3x3
matrix (the triangle method)

3. We have shown the example of determinant calculation using
the expansion of the first row. Try to calculate the determinant of a ma-
trix D using the column expansion (take any column you like).

Practical task

All the matrices for this task are already given above in the prac-
tical task 1 after the paragraph 1.2. However, this time you need to take
your variant as your own one plus 2: for example, if you have variant 1,
you need to take variant 3 and so on; variant 14 should take the variant
1, variant 15 should take the variant 2.

1. Put down the matrix of minors for the matrix 4.

2. Evaluate the determinants of the matrices 4 and B. You
should use the method of row or column expansion (choose any row
or column you like) and the triangle method.

1.5. Inverse matrices

Before coming to the new theme of inverse matrices let us intro-
duce the term of matrix transposition. A matrix transposition is a process
when we change the rows and columns in the matrix: the first row be-
comes the first column (and vice versa), the second row becomes the
second column, etc. For example, we take the matrix 4 below and trans-
pose it; we denote the transposed matrix as A"

4 7 =2 4 3 1
A=<3 -5 8), AT=<7 -5 10)
1 10 25 -2 8 25

The inverse matrix of a given matrix 4 is a matrix 4~' which sat-
isfies the following formula:

A+ A1 = (Iis an identity matrix)
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The inverse matrix is denoted as A" and the formula for its calcu-
lation is given below:

-1 _ T
A | A| 4"

where 4" is a matrix of minors (see the paragraph 1.4 and the al-
gorithm of its calculation).

Remark We denote the inverse matrix as 4™ but in spite of the
denotation please don’t think that we get it after raising all the entries of
a matrix A to the power of (—1)! Now you should get acquainted with the
real formula of the inverse matrix — so don’t make mistakes!

There are 4 important properties for the inverse matrices:

DIT=1; 2) (A7) = 4; 3)(ADI=(A7)"; 4) (4B)~! = B4

All those properties are rather easy to understand and to remem-
ber. The 4-th property is a little bit ‘tricky’ — however, let us pretend that
the direct action is similar to the process of dressing up. The inverse
action is taking the clothes off. So let 4 be a T-shirt and B be a coat: for
the left-hand part we ‘dress up’: put on firstly a T-shirt 4 and then a coat
B. For the inverse action (in the right-hand part) we have to ‘undress:
firstly, we take off the coat B and secondly, we take off the T-shirt 4.

So let us investigate the matrix 4 described above:

4 7 =2
A= (3 -5 8 )
1 10 25

The step-by-step algorithm of the inverse matrix calculation is the
following:

Step 1. We calculate the determinant of the given matrix.
It should always be the first step because if the determinant of a matrix
equals zero, the inverse matrix for the given one doesn’t exist!

Let us calculate the determinant for the given matrix A using the
method of first row expansion:

D | P I R RN
_1 10 25 10 25 1 25

=-820—-469 -70=-1359
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Step 2. We put down the matrix of cofactor for the given matrix
A and evaluate those minors.

3 3 —5
|10 25| _|i 25| |

A _|10 25| | 25| _|1 10|
4 2 4

-5 8| 13 8 | —5|

205 —-67 35
= (—155 98 33
66 —26 —41

Step 3. We transpose the matrix 4": we change the rows and col-
umns of this matrix.

205 —67 35\T 205 —155 66

AT =(-155 98 -33| =|-67 98 —26

66 —26 —41 35 —33 —41

Step 4. We calculate the inverse matrix using the formula:
1 205 —155 66

A-l——( T = - 67 98 —26|=
] 1219\ 35 33 _a

205 155 66
—1359 1359 —1359

| e7 98 26
1359 —1359 1359
35 33 41

—1359 1359 1359

Remark The numbers in the inverse matrix are not so ‘beautiful’
as we used to see in the practical tasks — however, for the inverse matri-
ces it is a common practice. Don’t be afraid of the big numbers and enjoy
the process!

One-minute task Does the matrix D have the inverse matrix?

- )

31




Practice Russian

TpancnoHHpoBaHUe MATPHIILI- transposition of a matrix
TpancnoHupoBaHHast MATpHUIA — transposed matrix
OoparHas maTpuua — the inverse matrix
Aaredpandeckoe 10nmoJHEHNe — cofactor

Review questions

1. Describe the algorithm of the inverse matrix calculation

2. What is the result of the inverse matrix of the product (you
need to open the brackets and put down the right product in the answer
using the inverse operation): (4B) ™' —?

3. What is an inverse matrix to an identity matrix?

Practical task

All the matrices for this task are already given above in the prac-
tical task 1 after the paragraph 1.2. However, this time you need to take
your variant as your own one plus 2: for example, if you have variant 1,
you need to take variant 3 and so on; variant 14 should take the variant
1, variant 15 should take the variant 2.

1. Put down the inverse matrix for the matrix B.

1.6. Rank of a matrix. The method of bordering minors.

In our life, we often hear the word ‘rank’ — speaking about the
military service or some rating processes. In fact, we need this word to
denote the position or status of somebody/something. In linear algebra
the term ‘rank’ is also useful to define something like a ‘matrix status’,
it depends on the dimension of a matrix and the number of linearly in-
dependent rows or columns.

The rank of a matrix is a highest order of non-zero minors of the
matrix. We look at the given matrix and evaluate the maximal dimension
of the minors we can ‘cut’ from this matrix, i.e. for the square matrix the
maximal rank can (possibly — as we haven’t checked it yet!) be equal to
the dimension of this matrix.

It’s important! If the number of rows inside the matrix is less than
the number of columns then the maximal rank cannot be greater than the
maximal number of rows.
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If the number of columns inside the matrix is less than the number
of rows then the maximal rank cannot be greater than the maximal num-
ber of columns.

(It is obvious — otherwise we can’t get the ‘square figure’ made
of entries and, however, all the minors are square). So for the m xn ma-
trix we have the following

rk A < min{m, n}

The only matrix which has a zero rank is a zero matrix (all the
entries in it are equal to zero). The rank of other matrices is not less
than 1. Any column matrix or row matrix has a rank that equals 1. It’s
also clear that rk(4) = rk(4)" as during the transposition of a matrix all
the minors are also transposed and so their values don’t change.

When we evaluate the rank of a matrix, we should remember
some important rules. For example, we have already found the non-
zero minor of the r-th order but all the minors of the order (» + 1)
are equal to zero. Then the rank of this matrix equals r. Indeed, it is
easy to learn that if we look for the minors of that matrix with the
order higher than (» + 1), they all will also be equal to zero. If we
look at any minor of the order (» + 2) and if we use, for example,
the row expansion method (e.g. we take the first row — however, it
can be any row or column of the matrix), we see that it’s equal to
zero as the (» + 1) cofactor also equals zero. So this rule also works
for the minors of the higher order.

So we ‘climb the stairs’ from the minors of the lower order to the
minors of the higher order: if we have already found the non-zero minor
of the k-th order then we go to the evaluation of the minor of (k + 1)-th
order (if they exist). If all of those minors are equal to zero then the rank
equals k. Otherwise, the procedure goes on and we investigate the mi-
nors of the order (X + 2) and so on. Using this method on practice for
the minors of the order higher than 4, is rather time-taking and difficult.
So they use the method of bordering minors.

A minor borders the given minor if the bordering minor has an
order which is greater by one than the given minor and the bordering
minor contains the rows and columns of the given one.
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The main rule of the bordering minors’ method is that during the
rank evaluation procedure it is enough to calculate only the bordering
minors on each step of the process. So if all the bordering minors are
equal to zero then all the minors of that order will be equal to zero.

For example, if the given matrix has the dimension 4x4 and its
rank equals 2. In order to get that result of the rank evaluation, at first
we need to find a non-zero minor of the 2-nd order . Then we need to
evaluate the minors of the third order. We have 16 minors of that order
inside the whole matrix and only 4 bordering minors of that same order!
The difference is great!

Let us introduce the scheme of the bordering minors’ method:

The given minor of
the k-th order is a
non-zero minor

|

Is it possible to form
the bordering
minor(s)?
The rank is equal to k We check the bordering
minors of the order (k+1).
Are there any non-zero
minars among them?
No
l Yes
The rank is equal to ko=k+]
k . i

Example. Find the rank of a matrix using the bordering minors’
method
1 -3 -3 1
A= < 0 1 1 3>
-4 0 0 7
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1) We need to find a non-zero 1x1 entry, i.e., any non-zero ele-
ment of a matrix. Let us choose the first element in the first row, it’s
equal to 1. So we can tell rk(4) > 1.

2) We need to find a non-zero minor of a dimension 2x2 that in-
cludes the entry we have already investigated above. So the only 2x2
minor which includes that element is a minor of the order 2 in the upper
left corner (it is marked in the matrix below)

1 -3 -3 1
A= < 0 1 1 3)
-4 0 0 7

Let us denote this minor as M;. We evaluate: M; = |(1) _13| =1

So we have 2 x2 non-zero bordering minor and we can tell rk(4) > 2.

3) We need to find a non-zero minor of a dimension 3x3 that in-
cludes the entry we have already investigated above. Let it also be the
33 minor in the left corner of a matrix and let us denote it as M.

1 -3 -3 1
A= 0 1 1 3
-4 0 0 7

So we have to calculate:

1 -3 -3
M,=10 1 11=1-0+3:4-3-4=0
-4 0 0

We see that we have a zero minor. However, we can check an-
other bordering minor M3, its entries are marked in the matrix below.

1 -3 -3 1
A= 0 1 1 3
-4 0 0 7

Thus, we can see that the bordering minor may not include the
columns or rows that are standing next to the minor of the previous or-
der, we can ‘jump’ over columns and rows but the necessary condition
is that the previous minor should be inside the new one and it should not
be broken into any parts.

1 -3 1
M;=1]0 1 3|=1-7+4+3-12+4+1:-4=47+0
-4 0 7
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So we can conclude that 7k A = 3. It can’t be more than 3 as we
can’t form the bordering minors around M3 due to the dimension of the
given matrix.

Practice Russian
Oxaiimasiionuii MUHOp — bordering minor
Panr matpuns! — rank of a matrix

Review questions

1. How do you understand the term ‘a bordering minor’?
2. Describe the algorithm of finding a rank of a matrix

Practical task
1. Find the rank of a matrix using the minor method

3 -4 9 -5
LLA=| 1 0 7 8
-6 2 3 O
-2 1 3 7
2A=(3 -4 5 -3
9 -1 6 0
6 8 7 1
3JA=(9 -3 —4 2
0 -2 3 5
17 0 9
4A=|1 3 5 8
25 -9 6
1 -5 4 6
5A={-1 7 9 -8
-4 0 3 -2
8 -2 4 5
6.A=(3 -1 5 =3
-1 -4 0 -1
3 -1 -1 9
7A=(-3 2 -3
5 9 8 2
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5 0 9 4
3 4 7 8
99A=(7 8 -3 -1
1 5 -4 2
1 4 -3 3
10.A = (—3 1 6 —4)
8 1 -2 9
5 8 -2 7
1.L.A=|-5 6 1 =5
0 2 -3 2
7 -1 2 4
12A=(4 -5 -3 —1)
1 0 -2 7

-10 5 =2

2
0 -8 5 9
-7 5 10 1
3
3

1.7. Gaussian method: finding the rank of a matrix
and calculation of the inverse matrix

‘Gaussian method’, ‘Gaussian elimination’ — all those terms are
named in honor of a prominent mathematician Johann Carl Friedrich
Gauss (see p. 3 and the biography below in this chapter). However, be-
fore the introduction of Gaussian method let us explain the rules of ele-
mentary matrix transformation.
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Elementary transformations inside the matrix include the follow-
ing operations:

a) Rearrangement of two rows (columns) inside a matrix;

b) Multiplication of any row (column) of a matrix to some non-
zero number;

¢) Addition of any row (column) of the given matrix (it may be
already multiplied by any non-zero number) to any other row or column
in the matrix

If we get a matrix B as a result of the transformations inside the
matrix A , then we tell that matrix A4 is equivalent to matrix B and so we
put down A~B.

Remark All three elementary transformations can be inverti-
ble: if we fulfil any of the transformations described above, we can
return to the ‘starting point’ by making the other elementary trans-
formations:

For the operation a): to fulfil the inverse operation we need to
return the rows (columns) into their initial places;

For the operation b): to fulfil the inverse operation we should
multiply the transformed row (column) by the inverse number;

For the operation ¢): to fulfil the inverse operation we should take the
row (column) that was earlier multiplied by a non-zero number; then we mul-
tiply this row(column) by the inverse number and we should add it to the row
(column) which was transformed before that inverse process.

It’s important! The elementary transformations don’t change
the rank of a matrix.

So when we have already learnt the phenomena of elementary
transformation, let us introduce the algorithm of finding the inverse ma-
trix using a Gaussian method:

Step 1. We put down the given matrix and to this matrix we join
the identity matrix of the same dimension to the right of the given one.
For example, if we have 3%3 given matrix then we put down the 3x3
identity matrix to the right of it. Usually we divide the given matrix from
the identity matrix by a straight borderline:

a;; aq;z a3 1 0 0
<a21 az; a3 | 0 1 0)
az; azy; az3 |0 0 1
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Step 2. Using the elementary transformations, we should get the
identity matrix in the left part (instead of the given matrix). Then in the
right part we automatically should get the matrix which is inverse to the
initial one. Below we denote the entries of the inverse matrix as a ;.

1 0 0 a'yy a4, |a'ss
0 1 0 a'y; a'y,|ay;
0 0 1 a'y; a'sy|a's;

Let us demonstrate a simple task. We need to calculate the in-
verse matrix to the given matrix 4.

1 0 2
A4=|11 -1 0
1 -2 -1

So we put down the matrix A and join the identity matrix as a part
of a new common matrix

1 0 2|1 00
(1 -1 0|0 1 O)
1 -2 =110 0 1

We need to get an identity matrix in the left-hand part. So firstly
we need to have a matrix of a so-called row echelon form — a form got
by applying Gaussian elimination to a matrix. Let us introduce the defi-
nition of a leading coefficient.

A leading coefficient is a first non-zero entry of a matrix.

So for the echelon form of a matrix we have:

— All the rows that consist only of zeros, are situated on the bot-
tom of the matrix.

— The leading coefficient (also called the pivot) of a nonzero row
is always strictly to the right of the leading coefficient of the row above
it (all of them are situated on the main diagonal).

Remark Sometimes there is an additional condition that the
leading coefficient should be 1, and there also exists a reduced row
echelon form where:

— A matrix is already lead to a row echelon form;

— Each non-zero pivot in each row is 1

— The other elements in the row, except the pivots, are zeros).
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For our problem we should use the reduced echelon form as
we need to get the identity matrix in the left-hand part. However, a
row echelon form is a first step on this way.

So the echelon form looks like a ‘ladder of zeros’ under the main

diagonal
d11 12 d13
( 0 ap a23)
0 0 asz;3
Let’s see how the elementary transformations help us to achieve
our goal.
First of all, we have to make a zero instead of a first entry in a second
row. We look at the whole matrix and we notice that the first row and the

second row have ‘1° as the first element in the row — so if we subtract the first
row from the second row, we would get zero instead of a first entry.

Let us put it down.
(1 0 2|10 0) II—I—>II<1 0o 2 1 0 O)
1 -1 0|0 1 0)=|0 -1 -2(|-1 1 0

1 -2 =110 0 1 1 -2 =110 0 1

For a sign of elementary transformation we can use an arrow or a
¢~ sign. Above the sign we put down the information about the ele-
mentary transformations done on this step (in the transformation above
we marked that we subtracted row I from row II and put the result into
the second row). The other important moment is that in the result of the
transformation we changed only the second row, and the first row is still
the same. And, at last, we see that also we subtract the first row from the
second row in our augmented matrix! That is the key peculiarity of the
method that helps us to get the right result.

Let us look at the next step of our transformation. We need to get zero
instead of a first entry in a third row. We see that the first row and the third
row also have ‘1’ as the first element in the row — so if we subtract the first
row from the third row, we would get zero instead of a first entry. So we take
the matrix got on the previous step and make another elementary operation:

1 0 2|1 0 O\ypm/t 0 2]1 00
0 -1 2|-1 1 0)]==(0 -1 —2|-1 1 0

1 -2 =110 0 1 0 -2 -3]-1 0 1
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Now we should put a zero instead of the second entry in a third
row. We see that in the second row we have (-1) as the second entry. So
if we multiply the second row by (-2) and add it to the third row, we
would get the necessary result.

1 0 2 1 0 0

<0 -1 -2]-1 1 0)

1 -2 -31-1 0 1
I+11-(—2) -1 (1 0 2 1.0 0)
(0 -1 -2|-1 1 0

0 O 1 1 0 1

Now we can easily get ‘1 on a main diagonal in the second row.
We should just multiply it by “—1°.
1 0 O
1 -1 0

10 2|1 0 0\pe o/l 0 2
0 -1 —2|-1 1 0]—=(0 1 2
o 0 1]1 01 00 11 0 1

We need to get zeros everywhere except the main diagonal in the
left-hand part of a matrix. Luckily, one zero in the first row was already
given in the task as the second entry. So we have to get zeros instead of
both numbers 2’ — the third entries in the first and second rows. How-
ever, we need to save the results that we have already made on our way
to the identity matrix. So the ideal row as a material for our transfor-
mations is the third row, where the leading coefficient in the left-hand
partis 1 — so it is easy for us to multiply it by any number, and if we add
this transformed row to any other row, the zeros won’t ‘spoil’ the result
of addition. So we need to multiply the third row by (-2) and add it to
the second row and to the first row.

II-(-2)+I-1

10 2[1 0 0\ PHmla1 0 0]-1 0 -2
01 2|1 -1 0)]—=—|0 1 0|-1 -1 -2
00 1/1 0 1 0011 o0 1

So we got the identity matrix in the left part of the matrix and now
in the right-hand part we automatically got the inverse matrix.

The result is:
-1 0 =2
A"l = <—1 -1 -2
1 0 1
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A task for everyone! Check the result by using the other method
of the inverse matrix calculation.

Now let’s see the peculiarities of finding the rank of a matrix.
When we get the echelon form of the matrix, the formula looks like:

kA =n—k

where n is the total number of rows in a matrix, £ is a number of
Zero rows in a matrix (a zero row is a row containing only zeros; this
row doesn’t have any non-zero numbers).

For example, we have a matrix:

1 2 3
A=<O 4 5)
3 6 9

We have one zero standing in the ‘proper position’ for the echelon
form: it is the first entry in the second row. Now we need to make a zero
instead of the first entry in the third row. We multiply the first row by
(=3) and add it to the third row. So we get

12 3\ yepy-nfl 2 3
0 4 5|0 4 5
3 69 0 00

We got one zero row. We came to an echelon form so
rkA=3-1=2

When we put down a matrix with zero rows, further we can just
remove this row, so the matrix will look like:

(1 2 3)
0 4 5

Of course, if all the elements of one row multiplied by the same
number, give us the corresponding elements of the other row, we always

get a zero row as a result of elementary transformations.
A linear combination of rows 11,12, .. 1n in a matrix looks like:

o7+ ogry .o Qg

A linear combination of rows is trivial if all coefficients o, are
equal to zero at the same time. A trivial linear combination looks like a
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zero row (which can exist in the given matrix or can be got as the ele-
mentary transformations between the matrix rows).

A linear combination of rows is non-trivial if at least one of the
coefficients o, is not equal to zero.

The system of rows is linearly dependent, if there is a non-
trivial linear combination of rows, and this combination is equal to
the zero row.

The system of rows is linearly independent, if only trivial linear
combination of rows is equal to the zero row.

There is a simple criterion to check whether the matrix has line-
arly dependent rows.

The rows in a matrix are linearly independent if the determinant
of a matrix is not equal to zero. The rows of a matrix are linearly de-
pendent if the determinant equals zero.

Inspiring biography Johann
Carl Friedrich Gauss is one of the

most famous German mathemati-
cians. He was born in a poor family;
his mother was illiterate and only
could tell that her son was born eight
days before the Feast of the Ascen-
sion (which is after 39 days after
Easter). In 1799 Gauss calculated his
precise date of birth by creating an al-
gorithm that allowed to calculate the
date of Easter for any year. However,
at the age of three Johann Carl Frie-
drich corrected a mathematical mis-
take that his father had made, and at
school he solved a problem of arith- (1777-1855)

metical series faster than 100 of his

classmates using an interesting and rational method invented by himself.
Gauss's talent impressed the Duke of Brunswick, who sent him to the
Collegium Carolinum (now Braunschweig University of Technology),
which he attended from 1792 to 1795, and to the University of Gottingen
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(from 1795 to 1798). The first famous discovery of Gauss occurred in
1796 when he created a ruler-and-compass construction for the solution
of a regular polygon. It was a problem that had not been sold since its
formulation in the times of Ancient Greece. During his life he made
plenty of wonderful discoveries in the field of number theory, developed
greatly the theory of complex numbers, laid the foundation of the linear
algebra and invented the method of solving the systems of linear equa-
tions. He proved the Fundamental Theorem of Algebra, had researches
in the theory of probability and statistics, differential geometry. He was
interested in astronomy too and he held the post of Director of the astro-
nomical observatory in Gottingen for many years. When the planetoid
Ceres was in the process of being identified in the late 17th Century,
Gauss made a prediction of its position which varied greatly from the
predictions of most other astronomers of the time. But, when Ceres was
finally discovered in 1801, it was almost exactly where Gauss had pre-
dicted!

Practice Russian

Méron I'aycca — Gaussian method

Ipeodpazosanue ['aycca — Gaussian elimination

DJieMeHTApPHBbIEe Mpeodpa3oBaHus — elementary transformations

Review questions

1. What is an echelon form?

2. What is a row reduced echelon form?

3. How do we calculate the inverse matrix and how do we eval-
uate a rank of a matrix using the Gaussian method?

Practical task

1. Calculate the inverse matrix for a matrix A using the
Gaussian method.

Remark! Don’t forget that you can rearrange rows and col-
umns! For example, you can put the first row in a variant 14 instead
of the second row (and, of course, the second row will be put instead
of the first one) — and you will get a ‘ready’ zero as the first entry in
the second row to get closer to the row echelon form. The third row
in the variant 12 starts with the number ‘1’ — you can change its
place with the first row and you will get a ‘ready’ leading coefficient
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for the echelon form. In fact, to get the numbers ‘1’ as the leading
coefficients is very convenient: you can multiply this row by any
number easily to get zeros in other rows as a result of elementary
row transformations.

6 8 7
3.A=[9 -3 —4)
0 -2 3
1 7 0
4.A=11 3 5 )
2 5 -9
1 -5 4
50A=(-1 7 9)
-4 0 3
8 -2 4
6.A=(3 -1 5)
-1 -4 0
3 -1 -1
7A=(-3 2 1 )
5 9 8
-5 10 1
8A=(7 2 8)
5 0 9
4 7
9.4 = 8 —3)
5 —4




1.8. Cramer’s rule for systems of linear equations

Let us introduce the rule for solving the square systems of linear
equations (a square system means that the number of variables in the
system is equal to the number of equations in this system). It was in-
vented by Gabriel Cramer, a Genevan mathematician who began his in-
vestigations of linear algebra long before the discoveries of Gauss (see
the biography of G. Cramer at the end of this chapter).

If we have a square system of linear equations:

allxl + alzxz + a13X3 = b
a21x1 + azzxz + a23X3 =cC
a31x1 + a32x2 + a33X3 = d

Here ai1,a12...a33 are some coefficients standing in front of the varia-
bles x1, x2, x3 and b, ¢, d are just some numbers standing in the right-hand part.

The algorithm of the Cramer’s rule is very simple:

Step 1. We put down the determinant of the system — the deter-
minant which consists only from the coefficients standing in the left-
hand part in front of the variables (for all the equations of the system).
Usually we use a Greek letter A for the denotation of this determinant.

a11 Q12 4dg3

a1 Gz dz3

az; 04z dszz
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Then we calculate the value of this determinant. We should notice
that the determinant of the system should not be equal to zero. If we have
a zero value then the Cramer’s rule won’t work.

Step 2. We compose a determinant A; — to use it further for the
variable x;. We take the determinant A and for the new determinant A,
we remove the first column of A (the column of coefficients in front of
x; in all the equations of the system) and put the column of the three
right-hand part values instead:

b
9
d

So the determinant A; looks like:

b a; a3
C Qzz dzs
d az; ass

Alz

Step 3. We make the similar operations and compose the deter-
minants

A, and As. For the determinant A, we put the column of the right-
hand parts instead of the second column of A (the column of coefficients
in front of x,). For the determinant A3 we put the column of the right-
hand parts instead of the third column of A (the column of coefficients
in front of x3). So we have:

a;; b ag3
A,=|ay; € a3
az; d dasz
a1 a2 b
As=az1 Q2 C
as, as; d

Step 4. To learn the values of the variables x, x», X3 we divide the
determinants A, (for our case n = 1, 2, 3) with corresponding indexes by
the determinant of the system A:

So we have got the answers of the given system.
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Remark You can use different denotations of the variables —
for example, instead of xi, X2, X3 you can put down x,y,z. Then it is
better to denote the determinants with the indexes of the corre-
sponding variables A, A,, A;. It provides better understanding of
your calculations.

Remark You should have already guessed that if in one of the
system’s equations we don’t have a full set of the variables — for ex-
ample, for the system with three variables one of the equations looks
like: x; + 3x3 = 4, that means we have a zero coefficient in front of
x1. So we put a zero to its proper place in all the corresponding rows
of our determinants.

The Cramer’s rule is rather simple so we suggest you to solve
your practical tasks just right now!

Inspiring _biography Gabriel
Cramer, a prominent mathematician,
was born in the Republic of Geneva and
showed real talent for mathematics
since his early ages. He got the doctor-
ate at the age of 18 and became a co-
chair at the University of Geneva at the
age of 20. Later he published a lot of
works in the fields of geometry, proba-
bility theory, history of mathematics
and also created the basement of linear
algebra. He even had some published
researches in philosophy! In 1750 he
invented his famous Cramer’s theorem
for the algebraic curves and discovered
the Cramer’s rule described above.

Gabriel Cramer
(1704-1752)

Practice Russian

Ipasuno Kpamepa— Cramer’s rule

Cucréma auHéliHBIX ypaBHéHmii — the system of linear
equations

Onpenenntennb cuctéMmsl — the determinant of a system
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Review questions
1. What are the restrictions for using the Cramer’s rule?
2. Describe the algorithm of a Cramer’s rule

Practical task
1. Solve the system using the Cramer’s rule
2x1 — 4x, + 6x3 =4
1.4 6x1 +2x, —2x3 =6
4x; + 10x, + 4x; = 18

3x; + 635 = 21
2. 6x1 - 3x2 + 3x3 = 9
3x1 +9x, — 3x3 =12

le + 10x2 + 4X3 = 4
3. 4x1 + 6x2 + 4X3 = _6
2x1 + 6x, + 8x3 = —6
4X1 + 8X2 - 12X3 =4

4.412x; +8x, —16x3 =0
8x1 - 4x2 = _4‘

8X1 + 4X2 - 2X3 =0
5. 2X1 + 4X2 + 2X3 =2
Xy — X3 =-3

5X1 + 10x2 - 5X3 =10
6. 10x1 - 15x2 + 10X3 = 15
15x1 + 5x2 + 5X3 =40

3x1 + 3x2 + 3X3 =9
7. 3x1 + 6x2 + 9X3 = 6
3x1 + 9x2 + 1SX3 =-3

4-x1 + 6x2 - ZX3 =8
8.42x1 + 2x, + 6x3 = 10
6X1 - 8X2 + 2X3 = 0

3x1 - 3x2 + 6X3 =—6
9.{6x; — 6x, + 12x3 = 12
9X1 - 9X2 + 18X3 = 9

8x1 - 4x2 - 12.X'3 =12
10.412x; + 16x, — 20x3 = —32
32x, + 28x3; = 68
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—2x;, + 6x; + 4x3 = 14

[ 4x, + 8x, —2x; =8
11.

6X1 + 4x2 - 4X3 =-12

6x1 - 3x2 +3X3 =9

3x; +15x, —3x3 =0
12.{

3X1 + 6X2 - 9X3 =—6

3|

12x1 - 4‘x2 - 4X3 = _20
4x1 + 12x2 + 8x3 = 8
20x1 - 8x2 + 16X3 = -28

14.

6x1 + 9x2 - 12.X3 = 4‘8

{ 9x1 - 6x2 + 3x3 = _30
3x; —12x, + 9x; = =54

10x1 + 15x2 + 5x3 = 5

;153{:1 + 10x2 + SX3 = 25
15.

10x; + 5x, + 15x3 = 55

We have alrea

If we have a sy

numbers in the righ

Gaussian elimination for systems of linear equations

dy got acquainted with some key principles of
Gaussian method based on the elementary row/column transfor-
mations of the matrix. Now we come to the next aspect of its ap-
plication — it is extremely useful for solving the systems of linear

stem of linear equations:

allxl + alzxz + a13X3 = b
a21x1 + azzxz + a23X3 =cC
a31x1 + a32x2 + a33X3 = d

we can transform this system into the following matrix where we
put down the coefficients standing in front of the variables and the
t-hand part. Our aim is to make the non-zero
numbers only on the main diagonal using the Gaussian elimination
— that will help us in finding the variables. Let us see how it works.
Firstly, we form a matrix itself with the column of right-hand part
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numbers standing a little bit apart from the coefficients. Such a ma-
trix made of the coefficient matrix and the right-hand part column,
is called an augmented matrix:

aj; Q2 a3 | b
a1 Az dz3 | C

azy dsy asz | d

Remark Here we have the symbols b, ¢, d standing in the right-
hand part. If we had symbols b1, b2, b; for the right-hand parts in
each equation correspondently, we could put down the system in
a matrix form 4X = B where A4 is the matrix of coefficients, X is
a column of variables, B is a column of the right-hand parts. The
augmented matrix in this case can be denoted as (4|B).

Then we need to get the following result with the help of the ele-
mentary row transformations:

aj; 0 0 |e

0 a;z 0 f s
0 0 a3l g

where aj;, a,,, a3z are the new coefficients that we have just got in
the result of elementary transformations. And we also got the new numbers
for the right-hand part of the system because of that same transformations.
So the resulting system will look like:

aj1x;=e
* —

azx; = f
* —

Q33X3 = g

We can also lead the resulting matrix to the row reduced echelon form:

1 0 0| h
01 0
0 0 1]k
So we can have a simple system with the answers:
X1 = h
{xz =]
X3 = k
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Example Solve the system of equations using the Gaussian
method

3x1 - sz + SX3 =7

{ 7x1 +4x, —8x3 =3
le - 3x2 - 4X3 =—-12

We have already got acquainted with the rules of elementary row
transformations so we won’t put down in words any comments on the
transformations we make on each step. However, we will put the trans-
formations down schematically just right in the expressions below as we
have already done before.

3 -2 5 |7 0o -2 2|2
5 -3 —4]-12 5 -3 —4l-12

7 4 -8 3

(7 4 -8 3 )1-(—§)+11—>11 7 4 -813 1(=3)+1-1
> >

1-(—§)+111—>111 g _26 59| 40 11-(—‘2*—2)+111—>111
—— 7 7 7 _
41 12 99
0 —— = |-=Z=
7 7 7
1:(7)-1
7 4 -8 3 (=)~
11-(—%)“11—)111 0 — 26 59 40 111:(—%)—411
\0 0 301 | 301
26 13
/ 4 8 3 \
1 = —-= = 59
7 7 7 I+ )=
26 13
0 0 1 2
1111159 1114 83111411 8 9111181
+II(—)— —_ —_— —_ +II-(—)—> —_— —_— +III-(=)—
(26) 7 71 7 ( 7) 7 7 (7)
01 0|3 0 3
0 0 12 1 2

0

0

1+111-(§)—>1 1 0 O
0

0 0 1
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So we get the resulting system:

x1=1
x2=3
X3:2

Remark In fact, it is not necessary to get ‘1’ as the leading co-
efficients and zeros everywhere in the part of the coefficients except
the pivots. You can stop earlier. For example, you can stop and
make a new system as soon as you get the ‘ladder of zeros’ under
the main diagonal (the echelon form):

7x1 + 4x2 — 8x3 =3
26 59 40

_x3 _7

l 301 301
26 37 13

We investigated the system of linear equations with three varia-
bles and three equations in the system; however, this method is universal
for any number of variables and equations inside one system.

Practice Russian

Cucréma quHéHBIX YpaBHéHUIT — system of linear equations

Review questions

1. What is an augmented matrix?

2. Describe the algorithm of solving the system using the Gauss-
ian method

Practical task

1. Solve the systems of the previous chapter (Cramer’s rule)
using the Gaussian method.

1.10. Linear dependence and independence of vectors. Bases.

We have already got acquainted with the vectors and their role in the
matrix theory (Just let’s come back to the very beginning and look at the row
vectors and column vectors). Speaking about linear dependence and inde-
pendence of vectors, we should firstly mention the term of a vector space.

Let us introduce the vectors by, b, ...b, and some real numbers
M, A2,
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The vectors bi1,by, ...b,, are called linearly dependent if the linear
combination of vectors by, by,...b, with the real numbers A, Aa,... A,
equals zero when at least one number among A, A»,...As is @ non-zero
number:

Mbr+ b+ .+ N b, =0.

The vectors bi1,b, ...b,, are called linearly independent if the lin-
ear combination of vectors by, by, ...b, and the real numbers A, A2,... Ay
equals zero only in the case when all the numbers A, A2,...A, are equal
to zero:

Mbr +Mby ...+ N, b, =0.

There is another important criterion that helps us to check the lin-
ear (in)dependence of vectors. Let us explain at the example of 3-dimen-
sional space.

We have an expression:

M1 A A1
)\%1 bl + )\%1 b2 + )\%1 b3 = 0
A3y A5 N

So we can put down a system of linear equations with variables
b], bz, b32

A%lbl + )\%11)2 + )\ilb3 = O
}\%lbl + A%lbz + Aglb?’ = 0
}\%lbl + A%lbz + }\glb3 =0

Then we form a matrix C. The first row consists of the coefficients
in front of a variable b, in all three equations of a system, i.e. it is a first
column of coefficients; the second row is a row of coefficients in front
of b, and the same rule for coefficients in front of bs.

After that we look at the determinant of a matrix C. If it is not
equal to zero, then all the vectors are linearly independent. If it is equal
to zero, then there are linearly dependent vectors.

M1 A Ay M1 A A3y
C= 7\%1 }\%1 }\_%1 > |C|:}\%1 }\%1 7%1
N B A N B Ay

54



We can also check whether this set of vectors is linearly inde-
pendent if we lead the matrix C to the row reduced echelon form — if we
succeed and get no zero rows, then the vectors are linearly independent —
and they’re linearly dependent otherwise. Below you can see the exam-
ple of a row reduced echelon form that shows us the linear independence
of given vectors.

A, 0 o
C=l 0 A3 o0
0 0 A3

Remark There are some cases which help us to find out that
the system of vectors is definitely linearly dependent:

1. One of the vectors in the given system is a zero vector

2. Two or more vectors in this system are equal to each other
or the system contains proportional vectors: b = ab;

3. When a vector is an obvious linear combination of some
other vectors

4. If the space where a set of vectors is defined, is n-dimen-
sional, then all the elements in a set of (» + 1) vectors can’t be line-
arly independent!

We say that linearly independent vectors e, e, e3...e, form a basis (in
Ancient Greece ‘faoic’ meant ‘the foundation”) if any vector d can be pre-
sented as the linear combination of vectors ej,ex,e3...e, i.e. for any vector we
can find such real numbers i, B2, B3,.. ., B that the following equality is true:

d=pier + Prer+ Pses+ ... + Puen

The coefficients i, B2, B3,..., B» here are called the coordinates
of the vector d in the basis { ej, e, €3... en}

Theorem Any unspecified vector can be presented in the given
basis, and this presentation is unique.

Let us look at some simple problems.

Task 1 (One-minute task) There is a 3-dimensional vector space
J2. In this space we have a set of vectors:

1 5 15 6
10 11 11 =27
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Check the linear (in-)dependence of vectors.

Task 2 There is a resolution of a vector d in the basis {ei, ez, e3}:
d = 5e; + 2e; — 3es. Find the coordinates of the vector d in that basis

The coordinates of a vector in the basis are the coefficients standing in
front of the vectors e, e, e3 in this basis, so we have: d = {5;2; -3} 1.1, 2,3}

Task 3 Check whether the vectors form a basis in V?

(o=

For this task we need to create a matrix:

1 3 5
4 7 8
9 17 11

We check whether its determinant is not equal to zero:

1 3 5
4 7 8] =118 # 0 — the vectors are linearly independent, the
9 17 11
space is 3-dimensional , so they form a basis in /7.
Task 4

8 1
Find the coordinates of a vector x = (6) in a basis: e1=<4>,

9 5
3 3
ez=< 4 ), e3=(—6>.
-7 6

If we present a vector x in that basis, the following expression is

true:
X =Ber + Pe2 + Pses
Let us put down the expression in the coordinate form.

8 1 3 3
(9)=2(5)+n () ()
9 5 -7 6
8 B1 3B, 3B3
(6) =|4By |+ | 4B2 |+ | —6Bs3
9 54 =78, 683
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So we have:
8=B1+3B2 +3B3
6=4B1 +4B; - 6P
9=5B1-7B; + 6B3

We can solve this system using the Gaussian method or Cramer’s
rule. Let us take the Cramer’s rule.

1 3 3 8 3 3
A=14 4 —6[=-324; AMi\=1|6 4 —6(=—648

5 =7 6 9 -7 6

1 8 3 1 3 8
Ar,=14 6 —6l=-324;A3=1(4 4 6|=-324
5 9 6 5 =7 9
A A A

Bl=f—zi Bz_f=1: B3_Z3=1

Sox=2e;1+ et e;s.

Remark Often a problem is formulated like that: there are
3 vectors a, b, c. Show that they form a basis and find the coor-
dinates of a vector x in that basis. It’s obvious that firstly you
should apply an algorithm from task 3 and after having proved
that the vectors form a basis, you come to the next step de-
scribed in the task 4.

Practice Russian
JInnéiino HezaBucumblie BEKTOPHI — linearly independent vectors

Jlunéiino 3aBucumbie BEKTOPHI — linearly dependent vectors
Ba3zuc — a basis

Review questions

1. Which vectors are called linearly dependent and linearly inde-
pendent?

2. Which obvious signs of linear dependence can a set of vec-
tors have?

3. What is a basis? Which vectors form a basis?
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Practical tasks

1. Prove that the vectors @, b, ¢ are linearly independent or

linearly dependent and find the coordinates of a vector x in the basis

a, b, ¢ (in case of linear independence of g, b, ¢)
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1.11. Consistent and inconsistent systems of linear equations

You have already learned a lot about the systems of linear equa-
tions. However, let us introduce other important terms.
Let us put down the system

a11X1 + a12x2 + -+ alnxn = b1
alel + azzxz + -+ aann = bz

Am1X1 T QaXy + -+ ApnXn = by
Let us put down this system in matrix form:
AX=B
The solution of this system looks like:
X=A"'B
Here A is a m x n matrix of the system’s coefficients, Xisan x 1
column of variables and B is a m x 1 column of numbers standing in the

right-hand part. Let us take the Gaussian method for the solution of a
system (*). We form an augmented matrix.

ai1 Q12 A1n | by



There are some different cases for this system’s solutions. Firstly
we need to get an echelon form for a matrix.
1) As aresult of the elementary row transformations, we can
get a row:
©000...0 |5y

That means we will have an equation of the system:
0-xi+0:x2+... +0:x,=b

So this result shows that the equation has no solution and the sys-
tem itself has no solution. Such a system without solutions is called an
inconsistent system.

2) If we don’t have any contradictions in the row, then the hori-
zontal part of the last ‘pace’ of a ‘ladder’ will cross the vertical line and
it will be continued to the end of a matrix. Before we put down the sys-
tem that we’ve got as a result of the elementary transformations, let us
consider that the ‘paces’ were formed in the r columns where r = rk(A4).
We leave the previously introduced denotations for the coefficients of a
system and its right-hand part.

So we have:

Ay1% + AypXy + o QX Ay Xy o QX = by,

o Xp + o+ Qg Xy Uy g Xpyg + o+ Ay X, = s,

Xy & Qg1 Xy T+ Qe Xy = br-

The variables that have ‘paces’ standing close to their coeffi-
cients, are called the basic variables (in our case they are: x, ..., x,); all
the other variables are called free variables.

Remark Sometimes we have to make the first variable in the
system’s equation to be a basic variable if we don’t have the variable
with the next ‘proper’ number.

For example, we have a system:

X1 +X3+x3+x4=4,
{ X3 —2x4 = 3.

Here we have the basic variables xi, x3 as we don’t have x; at
all in the second equation of a system (which is, in most cases, the
next basic variable when we have systems with two equations).
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Here we also have 2 cases.
I. [r=n], i.e. Rg(4) =n.
In this case, we do not have free variables so the system looks
like:
1% + QX5 + o+ Ay, X, = by
AypXy + o+ Ay X, = by

Ay Xy = Dye

So all we have to do here is to find x,, = b, /a,, from the last
equation and to put its value into the next-to-last equation and to go on
putting the resulting values to the equation above until the very first
equation of a system. You have already got acquainted with that proce-
dure. So we see that in this case all the variables are defined in a unique
way. The given system is a determined system (it is sometimes called
an independent system

IL. [r<n], 1.e. Rg(4) <n.

In this case we have n — r free variables: X1, ..., Xj.

If we give some concrete values to those variables and put them
into the right-hand part of a system, then for evaluation of basic varia-
bles we get the system which would be similar to the previous case.
However, the difference is that the number r will play a role of a number
n here. That means that the basic variables (with the condition that the
free variables are already given) will be defined in a unique way. How-
ever, we can give any values to the free variables, and in the investigated
case the system is undetermined. It is important to notice that such a
system has an infinite number of solutions.

However, when we put concrete numbers instead of free variables
and then we define the values of basic variables, we get a solution of a
system. So we can get any possible solution using this algorithm, can’t
we? Indeed, we can do that. Let us suppose that we have a specified
solution of a given system. A given system is equivalent to the system
led to an echelon form. That means, our solution also satisfies the system
in the echelon form. If we suppose the free variables to be equal to the
last (n-r) values of our solution, we will find the basic variables to be
equal to those in our introduced solution, as they are defined in a unique
way by the free variables.

So we have proved an important theorem.
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If we have a system of linear equations, this system can be incon-
sistent; otherwise, in the case it is consistent, if 7k(4) = n, it is a deter-
mined system, and in the case rk(4) < n, it is underdetermined.

In mathematics, a system of equations is considered overdeter-
mined if there are more equations than unknowns. In most cases it
doesn’t have solutions. A system which has more unknowns than equa-
tions, is called underdetermined.

Practice Russian

CoBMmécTHas cuctéma — consistent system

HecoBMmécTHas cuctéma — inconsistent system

Review questions

1. What are the definitions for an inconsistent and for a consistent
system?

2. Describe the classification of systems by the number of their
solutions.

1.12. Homogeneous systems of linear equations

A homogeneous system of linear equations is a system where all
the equations have only zeros in the right-hand part (no non-zero num-
bers in the right-hand part):

AX=0

Here A is a matrix of the system’s coefficients, x is a column of
variables — and zero in the right-hand part of this expression means that
in all equations of the system each right-hand part is equal to zero.

Remark A homogeneous system always has at least one solu-
tion, and this solution is a zero vector. Such a solution is called a
trivial solution.

So, if a homogeneous system has only one solution, this solu-
tion is a trivial one.

Let us firstly solve a system that has a unique solution:

x+y=0
{Zx —y=0
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However, this unique solution is trivia: x = 0, y = 0.
1 1 0)
2 -1 0
If we lead the matrix to an echelon form (we multiply the first row
by (-2) and add it to the second row; the result is put into a second row):

(1 1 0)
0 -3 0/

we see that rk(4) = 2. So we have just checked that the system
has a unique solution (see the theorem above).

However, we need to have a universal algorithm of solving the

system of linear equations even in case rk(4) < n.
Let us have a homogeneous system:

If we take the augmented matrix of a system, we have: A = (

a11x1 + a12x2 + ce + alnxn 0
az1X1 + Ay2Xy + -+ AoynXy = 0

Am1X1 + QaXy + -+ aQppxy, = 0
Let us consider from the very beginning that rk(A) = r < n, where
A is a matrix of system’s coefficients. (We have already learned that in the
case r = n this system has only a trivial solution). Let us lead the system
above to an echelon form and let us suppose that the “paces of a ladder’ have
been formed in the 7 columns that come first. Then we have:
ar1X1 + QX + 0+ AyeXy + Qi1 Xpyr o Ay =0
AppXy + o+ Ao Xy + A1 Xppq + o0+ QX =0

AprXy + Qppp1Xppq o0+ Qp Xy = 0

So x4, x5, ..., x, are the basic variables and x,;1, X;42,
..., Xp are the free variables. We have n — r free variables.

If we give some numeric values to the free variables, then the val-
ues of basic variables will be defined in a unique way. In this case, let
us suppose firstly:

Xry1 =1, Xpyp =0, Xr43 =0,..., x, = 0.

We put those numbers into a system and so we find the values of
basic variables. Letus getx; = x¥;, x, = x5, ..., x, = x{, asaresult.
Then a vector

E; = (x9,x%,...,x2,1,0,..,0)7
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is a solution of our system. Then let us suppose:
Xp41 =0, %02 =1,x.,3=0,..., x, =0.
In a similar way we define a vector
E, = (x2,x2,,...,x3.,0,1,0, ...,0)7,

That is also the solution of the system. If we continue this process,
we put down on the last step:

Xp41 =0, X2 =0,x.43=0,..., x, =1
and we get a solution:
— (40 0 0 T
Enr=(x0_1,%3 12 0, X9_17,0,00,..,1) .

Firstly, we need to check that the solutions that are found using
this algorithm are unique. For this, we take a matrix:

0 0 0
X11 X12 - Xir 100..0
0 0 0
le xzz sz 0 1 0 . 0
b
0 0 0
le—T‘,l xn_-r-'z xn_r’r 000..1

(the structure of this matrix is obvious so we don’t give any com-
ments). The framed minor of the order n — r is equal to 1. Then the
vectors Ey, E,, ..., E,,_, are linearly independent.

Let X = (%, %,,..., %, %r41,., X,)" be any unspecified so-
lution of a system. Let us investigate the solution

X0 = Xry1E1 + Xy By + -+ KBy

simultaneously with the previous one.

It is obvious that for these two solutions the values of free varia-
bles are equal. So the values of the basic variables will also be equal!
Thus, X = X°, i.e. they are one solution. So we have just found out that
any solution of a system is presented with the help of E; ,E, , ..., E,,_, .
Therefore, those vectors form a basis in the space of system’s solutions
— it is called the fundamental system of solutions.

If X p,. is a denotation for a general solution of a homogeneous system
(in other words, a set of all its solutions), then we have a structural formula:

Xg.h. =CGE +GEy + -+ Gy Enr,
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We have also discovered a fact that a number of variables n of
any homogeneous system consists of a rank r of a system’s matrix and
a dimension & of the space of its solutions:

k+r=n|

And this formula is also true for r = n, when a system has only a
trivial solution.

Remark In this paragraph we have given a method of solution for
a specified system. However, it is necessary to understand that for ‘find-
ing’ the general solution of a system we can take any fundamental system
of solutions. We can take any unspecified (but non-zero!!!) numbers in-
stead of ‘1’ that we have taken for the solution above. The values of the
free variables can be any numbers you wish to put — however, the
‘framed’ minor (see the example above) should not be equal to zero.

Example Find the solution of a system:

{x1+2x2_X3+4’X4 =0
x1+5xZ_3.X3+2.X420
1 2 —1 4\LEDHI 1 2 -1 4
(1 5 -3 2) (0 3 =2 —2)
So we have a system afterwards:

{x1+2x2—x3+4x4=0
3xZ_ZX3_2.X4_:0

X1, X2 are basic variables; x3, x4 are free variables.
Let us suppose x3=3, x4=0. The system will look like:
X, +2x,—3=0
{ 3x,—6=0
X1 +2x, =3
{ X, =2
x; =—1
{ X =2
Let us now suppose x3 = 0, x4 = 3. We have the following system:

{x1+2x2+4=0

3x, — 6 =0
{x1=—8
x2=2
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So we get a fundamental system of solutions:

-1 -8
| 2 | 2
E1 —_ 3 ) EZ - O )

0 3
-1 -8
2 2

Xg_h Cl 3 + CZ 0 ; C]_,CZ eR

0 3

Practice Russian

Onnopéanas cuctéma JUHEHBIX ypaBHéHUIH — homogeneous
system of linear equations

dynnameHTanbHas cuctéma peménumii — fundamental system
of solutions

Practical task
1. Solve the homogeneous system

| {le —4x, + 6x3 —5x, =0
10xy + 4x3 — 6%, =0
) {3351 + 7x, + 6x3 —9x, =0
9%, —3x3+6x, =0
3 {x1+3x2+4x3—5x4:0
6x, +8x3—x,=0
4 {4x1 +7x, —12x3 +2x, =0
’ 4x, +8x3—2x, =0
5x; 4+ 7x; — 2x3 +4x, =0
4x, + 2x3 —5x, =0
5x; +10x, —9x3+x, =0
15x, + 10x3 + 15x, = 0

¥
{3){1 + 7x2 + ZX3 - 2x4_ =0

=)

3

9%, + 18x3 +3x, =0
4x; +6x, —2x3+7x4, =0
6x; —8x, +2x3 =0
Xy — Xy, +2%x3 —4x, =0
—6x, +12x3 —x, =0
8x1 —4x, —x3+7x,=0
O'{ 16x, — 203 4+ 5%, = 0

8

9

1
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11{x1+8x2—x3+3x4=0
" xy+4x3—5x,=0
X1 +15x, —2x3+x, =0
—X, +x3+4x, =0
13 2%y — Xy —3x3+8x, =0
" 12x, +8x3—7x, =0
14 {4x1—x2+3x3+x4=0
9%, —12x3+5x, =0
15%; + 2x, + 5x3 — 7x, =0
10x, + 2x3 —6x, =0

12.

15.

1.13. Inhomogeneous systems of linear equations

Let us introduce the other type of systems — an inhomogeneous
system of linear equations. In this system in the right-hand part of at
least one equation we have a non-zero number.

Let us investigate the inhomogeneous system of linear equations.

a11x1 + alzxz + -+ alnxn = bl
az1X1 + Ay2Xy + -+ AoynXp = b1

Am1Xy + ApaXy + o+ App Xy = by

Any its concrete solution is called a partial solution, and we de-
note it as X,; (partial solution of an inhomogeneous system). If in this
system all the right-hand parts are equal to zero, we get a homogeneous
system that is called allied homogeneous system.

Theorem _(about a structure of general solution of an inhomo-
geneous system)

A general solution of a consistent inhomogeneous system con-
sists of'its fixed (partial) solution and of an allied homogeneous system’s
general solution

Proof We put down our inhomogeneous system in a matrix form
AX = B. Then an allied homogeneous system is AX = O. Let us fix the
partial solution of an inhomogeneous system X;. So AX; = B. If X, is
any solution of an allied system, i.e. AXy = O, then we will have
A(X; + Xo) = A(X1) + A(Xy) = B+ 0 = B, so. X; + X, also will be
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the solution of an inhomogeneous system. We suppose now that X, is
an unspecified solution of a given system, and let us look at the differ-
ence X, —X; =XO Then AX? = A(X, — X;) = A(X,) — A(Xy) =
=B — B = 0. We get: X"is a solution of an allied system and, there-
fore, we have X, = X; + X°. If we put any possible solutions of an al-
lied system instead of X in the expression X; + X, then we will get any
possible solutions of a given inhomogeneous system — and no solutions
will be missed! This fact is described in a structural formula:

Xg.i. = Xp.i. + Xg.h. b

here X, ; is a denotation for a general solution of an inhomogene-
g.i. g g
ous system. In the other form it looks like:

Xgi=Xpi +CGEL+GEy + -+ G By | B

Kronecker-Capelli theorem
The system of linear equations AX = B is consistent if and only
if the rank of an augmented matrix of a given system is equal to a rank
of a given system: Rg(4|B) = Rg(4).
Task 1. Solve the inhomogeneous system of linear equations.
X1 +2x; —3x3 + x4, =10
{ Xy +3x3+4x, =8

In this case, we don’t need to lead a matrix to an echelon form.
We have basic variables x1, x; and free variables x3, x4.

First of all, we need to find a partial solution of an inhomogeneous
system. We make all the free variables to be equal to zero, we leave only
the basic variables and right-hand parts in the equations of a system.

{xl + ZXZ = 10
xz = 8
{xl = -6
Xy = 8
—6
8
So Xy: = 0
0
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Then we put down an allied homogeneous system and use the algorithm
described above for the theme ‘Homogeneous systems of linear equations’.
{x1+2x2—3x3 +x4=0
Xy +3x3+4x, =0

I.X3=1,X4=0
{x1+2x2—3=0

X, +3=0
x,—6—-3=0
{ X, = —3
X, =9
{x2=—3
9
-3
E\ = 1
0
2.x3=0,x4=1
X, +2x,+1=0
{ X, +4=0
x—8+1=0
{ X, = —4
x, ==7
{x2=—4
-7
—4
E= 0
1
Xgi = Xpi + CEL + GE,
-6 9 -7
Xg.i. = g + Cl 13 + Cz 04
0 0 1

Remark There is no factor C; in front of the column of a partial
solution. Try to explain this fact.

Practice Russian

Hennopoanas cucréma JuHéiiHbIX ypaBHEHUIT — inhomogene-
ous system of linear equations

Coro3nas ogHopéaHas cuctéma — allied homogeneous system
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Inspiring biography Leopold
Kronecker was born in Liegnitz, Prus-
sia (now Legnica, Poland) in 1823.
Kronecker became a student at Berlin
University in 1841. He showed great
interest in studying mathematics as
well as in astronomy, meteorology and
chemistry. He was especially inter-
ested in philosophy studying the phil-
osophical works of Descartes, Leibniz,
Kant, Spinoza and Hegel. He spent a
summer of 1843 at the University of

Leopold Kronecker Bonn, which he went to because of his
(1823-1891) interest in astronomy rather than math-
ematics, he then went to the University of Breslau for the winter
semester of 1843—44. Kronecker spent a year at Breslau before re-
turning to Berlin for the winter semester of 1844—45. In Berlin he
worked on his doctoral thesis on algebraic number theory under Di-
richlet's supervision. The title of his thesis was On complex units
and he became a PhD in 1845. (Kronecker was questioned at his
oral examination on a wide range of topics including the theory of
probability as applied to astronomical observations, the theory of
definite integrals, series and differential equations, as well as on
Greek, and the history of philosophy). Kronecker's works were in
the theory of equations and higher algebra, the theory of algebraic
equations, and the theory of algebraic numbers. However, he liked
to investigate only the integers and a finite number of steps. Kron-
ecker is well known for his remark: ‘God created the integers, all
else is the work of man’. He was a professor of Berlin University;
however, he accepted the honours of Paris Academy, St. Petersburg
University, Royal Society of London for Improving Natural
Knowledge.

Inspiring biography Alfredo Capelli was born in 1855 in Mi-
lan, Lombardo-Veneto (now Italy). He attended the University of
Rome and in 1878, he wrote his thesis dedicated to the theory of
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groups that had a great success.
In 1880s he published some brilliant
works about solving the systems of
linear equations — for example, he
and Gabrieri showed that a system of
equations having rank k is equivalent
to a triangular system with exactly
k nonzero diagonal terms. He was
a professor at University of Palermo
and later got a chair of algebra at the
University of Naples where he stayed
for the rest of his life.

Alfredo Capelli
(1855-1910)

Practical task
1. Solve the homogeneous system

—

{le —4x, + 6x3 —5x, = 4
10x2 + 4x3 - 6x4, = 7

) {le +7x, + 6x3—9x, =3
’ 9%y — 7x3 + 6x4 = 8
3 (xq + 3x, +4x3 — 5x4 = 4
) 6x, + 8x3 — x4 = 2
4 4x1 +7xy —12x3 +2x4 =9
) 4x, +8x3 —2x4 =6
5 5x1 + 7x; — 2x3 + 4x4 = 10
' 4xy +2x3 —5x, =8
6 5x; + 10x, — 9x3 + x4, =3
"(15x, + 10x3 + 15x, = 12
7 3x1 +7x; +2x3—2x4 =5
U 9%, +18x3+3x, =9
2 4x1 + 6xy — 2X3 +7x4 =7
’ 6x1 — 8x, +2x3 =6
9 X1 — Xy + 2x3 —4x, =4
T —6xy + 12x3 — x4 = 2

10 {8x1_4x2_x3+7x4:10
’ 16x2 - ZOX3 + SX4_ = 20
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11{ 1+ 8x; —x3+3x, =1
Xy +4x3 —5x, =4

xq +15x, — 2x3+x, =8
{ —Xx, +x3+4x4 =5
2%y — Xy — 3x3 +8x, =12
{ 12x5 + 8x3 —7x4 = 6

12.

13.

{4x1—x2+3x3+x4 =4
9%y —12x3 +5x, =1

15 {153(1 + sz + 5x3 - 7x4 =7
10x2 + 2x3 - 6X4 =2

Creative task We have just got acquainted with an interesting
theme and we have come to the end of the chapter. It is time to show
your talents! You can take any concrete theme, formula or a definition
from this chapter and create something interesting dedicated to this
theme! It can be a poem, a crossword puzzle, a painting or a pencil
sketch, a fairy-tale or even a song - however, your creative work should
rely to the matrix theory and systems of linear equations. Share your
achievements with friends and remember: it is not a contest, it is a festi-
val, and each participant is already a winner! This task is not necessary -
however, we hope all of you have something positive to say, to draw or
to sing!
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2. ANALYTICAL GEOMETRY

Analytical geometry is a branch of mathematics in which we in-
vestigate geometry with the use of algebraic methods. The coordinate
system is the basic object of the analytical geometry. The system of co-
ordinates lets us establish the connection between geometrical images
and algebraic constructions, e.g. equations, inequalities, etc. In further
material, we would work with Euclidean geometry (i.e. the geometry
that you have already learned at school). That is why we will not discuss
the details of objects’ definitions, such as ‘a point’, ‘a straight line’, ‘an
angle’, ‘a length’, ‘a volume’, etc. However, we should note that we
would have one unit of measurement for the length — one for the whole
chapter. So we would denote lengths, surface areas and volumes by di-
mensionless numbers. (Thus, we won’t wonder why, for example, the
length is equal to the volume. We use only the numerical values!)

2.1. Vectors. Basic definitions and elementary operations

For example, we have two given points 4 and B. We draw a line
from A4 to B and so we get a segment AB. We put ‘an arrow’ at the end
of the segment (close to the point B). This new object is called a geo-

metric vector or just a vector AB. This word came from Latin language
and in those ancient times it meant ‘a transporter, a carrier’.

/ B
A
More precisely, AB is a fixed vector and it is considered that it is
fixed at the point A. However, we won’t put down the word ‘fixed’. The
length of the segment AB is called a vector modulus and is denoted as
|E| If the point A coincides with the vector B then this vector is called
a zero vector. Obviously, it is the only vector that has a modulus which
is equal to zero. We can’t draw a precise picture of a zero vector. We
don’t consider that depicting it as a point is a right way. 4 point is not a

vector. 1f |E| = 1 then the vector is called a unitary vector.
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Collinearity The set of vectors is called_collinear if all of those
vectors are parallel to a straight line L (we don’t exclude the case when
the vector ‘lies’ on this straight line). They also say at this case that the
straight line L is collinear to those vectors. According to the definition,
it is considered that each straight line is collinear to a zero vector. Thus,
if we join a zero vector to a collinear set or remove this vector from that
set, we say that this operation doesn’t influence the collinearity.

Coplanarity A set of vector is called coplanar if all those vectors
are parallel to a plane P. It is obvious that the collinear set of vectors is
also coplanar.

V="

Two vectors AB and CD are called the equal vectors if 3 condi-
tions are fulfilled:

1) The vectors AB and CD are collinear,

2) They have the same direction;
3) [4B| = D).
You can look at the examples of equal vectors in the picture below.

B D
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We can see from this picture that AB and CD are equal only in

the case when AC and BD are also equal vectors. However, the graphical
obviosity is not a real proof! We will not prove the fact of vectors’ equal-
ity but we will introduce the axiom which would further allow us to use
this fact without restrictions.

Equality axiom: for any 4 points A,B,C,D the following expres-
sion is always true:

AB=CD & AC=BD.

We should notice that in this axiom we don’t claim that those 4
points should be different! There are simple but important statements
which come out of this axiom.

Statement 1. All the fixed zero vectors are equal to each other.

Indeed, let A and B be any unspecified points. Zero vector fixed
in the point A, is denoted as AA , zero vector fixed in the point B, is
denoted as BB. Then, using the axiom and the obvious equality, we can
tell that AB = AB = AA = BB.

This statement gives us an opportunity to speak about a zero vec-
tor in all the cases — without dependence on the place where it is fixed.

Let us denote a zero vector: 0.

Statement 2. If AB = AC then the point B coincides with the point C.

Indeed, from the equality axiom we get: AB = AC = A4 = BC.
However, AA = 0. Then B and C can’t be different points.

A fixed vector BA is called the opposite vector to AB and it is
denoted as —AB. So BA =—A4B.

We can show that if AB = E)), then BA = DC. Indeed, it comes
from the following statements:

AB=CD = CD=AB = CA=DB = DE=CA = DC =
= BA = BA = DC. Here we have used the axiom of vectors’ equality twice.
Thus, we have the following: if there is a vector @ = {E,

C—D: ﬁ, }, then we can correctly define avector b = {ﬁ, ﬁ, E'_ﬁ, },
as inside the brackets we also have vectors that are equal to each other. Vector

b we will denote as —a and we will call it the opposite vector to d.
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The addition of vectors.
The axiom of addition: For each of the points 4, B, C, the fol-
lowing equality is true:

|48 + BC = 4¢

If all the vectors which form the equality above, are non-zero vec-
tors, then the axiom of addition is equivalent to the triangle rule for
vectors’ addition. The illustration of this rule is depicted below: if we

draw the vector AB, then we draw the vector BC coming from the ending
point of the vector AB. The vector AC is a vector of the sum for this two
vectors AB and BC: the starting point of AC coincides with the starting
point of AB (the first vector of the sum) and the ending point of AC

coincides with the ending point of BC (the second vector of the sum).
B

A

For example, there are two vectors d u b.Letus put the vector @ from
the point A, and let the point B be its ending point. Then @ = AB. Then we
put the vector b from the point B, and let the point C be its ending point, so
that b = BC. The sum @ + b of vectors @ u b is a vector ¢, which can be
depicted as the vector AC. We should put down: ¢ = @ + b.

The result of the vector addition doesn’t depend on the choice of
the starting point. If AB = ﬁ and BC = E—é, then AC = ﬁ . In the
picture below we can see the illustration for that law.

B C
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If we don’t use the picture and describe that fact analytically, we
get the necessary result in a following way:

Aj=f_1£} :A_A;B_,tz}:ﬁ:ﬁ L AC = id.
BC = BC BB =cCC

Here we use the equality axiom several times.
Addition properties

1) |ﬁ’ +b=b+ EL i.e. the vectors’ addition is commutative.
We can illustrate it geometrically using the well-known parallelogram
rule. We won’t prove the rule because it is quite obvious but it is highly
important to investigate the illustration in the picture below.

=l

B

A

=
)

Hered = AB = DC and b = BC = AD.

In fact, we need to prove that AB + BC =BC + AB.

Firstly, AB + BC = AC. Then we create a vector b = AD and
we draw a vector @ from the point D. Then let C be its ending point,
i.c. @=DC.In this case BC +AB = b +d = 4D + DC = AC. Then
we have

A_D) :B_,C:} = ﬁ - %} = DC = ﬁ and that means that

AB =DC AB =DC
(with the use of statement 2 above), C n C is the same point. Then AC =

TC. The property is proved.

2) |(a+ B) +¢=d+ (5 + €)|, i.e. the addition of vectors is as-

sociative. In fact, this property allows us not to put down any brackets
in similar statements.
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Letus denote: @ = AB, b = BC, ¢ = CD; then, on one hand, we
have (A_B) + ﬁ) +CD = AC+CD =4D , and on the other hand, we
get AB + (ﬁ + Z’B) = AB + BD = AD . The property is proved and
below you can look at the illustration of that same property.

C

D

3) , i.e. the addition of a zero vector to any vector

doesn’t change this vector. The proof is obvious:
d+0=AB + BB = AB = @ . Here we used the addition axiom.

4) |d+ (—d) = 0], i. e. if any vector is added to its opposite

vector, we get zero vector as a result. Indeed, @+ (—d) = 4B +
(<AB) = 4B+ FA = A4 = 0.

The subtraction of vectors is defined in a following way:
forany @ and for any b (ﬁ —b:=d+ (—B)) where the denotation

(:=) can be read as «is equal according to the definition». From that
definition we get @ — @ = 0 and it is quite obvious.

Remark From this statement we can formulate the geometrical
rule for subtraction. To get the difference @ — b we should add the vec-

tor —bto the vector d@.

!

al
I

=l

=1
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Vectors’ multiplication by a scalar.

Let us introduce the vector @ # 0 and the scalar a # 0. The

product of a scalar o and the vector 3 is such a vector b (we put down:

b= ad) that satisfies all the three conditions:

D [ = |allal;

II) the vectors d and b are collinear;

III) the vectors @ u b have the same direction if a > 0 and they
have the opposite direction if o < 0.

In all the other cases we suppose that ad = 0.

Let us investigate the main properties of this operation («a
and f are scalars, d and b are vectors):

1) (ep)a = a(pa) ;

2) (a+ B)d = aa + Ba;

3) a(d+ B) = od + ab;

4) 1-d=d.

It is better to join into one list all the properties of the operations
introduced above:

)@+b=>b+a;

2)(@+b)+é=d+ (b+0¢);

3yd+0=a;

4) d+ (—a) = 0;

5) (ap)a = a(pa);

6) (a + B)d = ad + Bd;

7) «(d+b) = od + ab;

8) 1-d=ad.

A set of all vectors together with the operations of addition
and multiplication by a scalar , is called a_space of geometrical

vectors. We can also speak in terms of that space about the linear
dependence or independence of vectors, linear combination of vec-

tors, etc.
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Lemma If @ # O then the vectors @ u b are collinear if and
only if there is a scalar a such that b = ad. (a is defined in a univalent
way). We will not prove this statement.

Corollary Vectors d u b are collinear if and only if they are lin-
early dependent.

In a similar way we can state that 3 vectors are coplanar if and
only if they are linearly dependent.

The last aspect to be investigated is the calculation of vectors’
coordinates. Let us find the coordinates of a vector @ = Zﬁ, which starts
at the point A(xy, V4, 24) and has an ending point B(xg, ¥, Zg). May
the point O be the origin of coordinates. Then OA and OF are radius
vectors and thus, OA = {x4, V4, 24} and OB = {xg, Vg, z5}. Then from
the equality OA + 4B = 0B we get AB = OB — OA. As in the pro-
cess of vector subtraction we subtract the corresponding coordi-
nates of vectors, we get the formula:

AB = {Xp — X4, Y5 — Va,2p — 24 }

So we subtract the ‘starting’ coordinates from the ‘ending’ coor-
dinates.

Practice Russian

BéxTop — a vector

Caoxénne Békropos — addition of vectors

Boruutanue BékTopoB — subtraction of vectors

Ymuo:xxkénue BékTOopa Ha yucjo — multiplication of a vector by
a scalar

Review questions

1. Describe all the ways of vector addition

2. How do we get the coordinates of a vector AB if we have the
coordinates of the points 4 and B?
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Practical task

Er—

1. Find a vector AB with the given coordinates of 4 and B:
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2.2. Scalar product of vectors

Let us remind you two definitions:

The length (the modulus) of a vector is the numeric value of a
given vector. In 3-dimensional space for the length of a vector d
{ax,ay,a,} we have a formula:

ld| = /a,zc+a32,+a§.

The angle between two vectors d and b is a minimal value from

two angles that we get when we lead the vector @ and the vector btoa
common starting point. In our explanations we would denote this angle
with the letter .

A scalar product of vector @_and vector b is a number which is
denoted by (@, B) and equal to

(@, b) = |dl|b| cos o,

where 0 < @ < & is an angle between the vectors @ and b, if
both of the vectors are not equal to zero. In all the other cases the scalar
product equals zero.

=l
ue

Rl
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Remark The result of a vector product is always a number, not
a vector!

The vectors 3 u b are called the orthogonal vectors if their scalar

product equals zero: (Zi, B) = 0.

Remark 1If at least one of the vectors is a zero vector then the
vectors are always orthogonal.

Vectors’ orthogonality criterion

The vectors @ # 0 and b # 0 are orthogonal if and only if the
angle between them equals @ = 90°.

Proof. 1f @ =90°, then cos90° =0 = (d, b) =0, so the

vectors are orthogonal. And vice versa, if (Ti, 3) =0 then

It_i||B| cos@ = 0. However, according to the theorem, |(_i||3| # 0.
Thus, cos @ =0 = @ = 90° (we mean that 0 < ¢ < 180°).

The main properties of a scalar multiplication:

1) (q, 3) = (_l;, a) — commutativity;

2) (a, b+ ¢) = (aq, 3) + (d, ¢) — linearity (in terms of ad-
dition);

3) (ad, _l;) =a(d, B) — linearity (in terms of multiplication);

4) (@ d) >0, considering (d, @) =0 & d=0 (positive
definiteness and nondegeneracy)

One-minute task Try to prove the properties 1 and 4.
If we look at the vectors d {a,aya.} and B{bx, by, b:}:

(@,b) = ayby + a,b, + asb,| (*)

From this formula we take many important formulae.
Firstly, as we have already learned, (d,d) = |d@|?, and then

ld| = /a,zc+a§,+a§.

As we have already learnt, the formula above describes the length
of a vector.
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This expression comes from (*) in the case when a, = by, a, = b,,
a, = b,. If @ is an angle between two vectors, then from the definition:
(a@, 3) = |d]| |B| cos ¢ and formula (*) we get:

axby + a,by, + a,b,

cos ¢ =

\/a§+a§+a§\/b§+b§+b§

And the vectors’ orthogonality condition is put down as:
|axbx +ayb, +a,b, = 0|.

Practice Russian

CxansipHoe npou3sBeiénne BEKTOpoB — scalar product of vectors

Review questions

1. How can we find an angle between two vectors (using the ma-
terial of this paragraph)?

2. How can we understand that two vectors are orthogonal?

3. Name all the properties of a scalar product for vectors

Practical tasks

1. Give at least three examples of the orthogonal vectors.

2. Find the cosine of an angle between 2 vectors

1.d@{1,03}; b{2, 4,1}
.@{-1,2.5};b{7,3,0}
.@{4,53);b{-6,5,1}
.d{2,8.10}; b{9,2, -3}
. @{1,4 9};b{-2,7,3}
.d@{-8,10.4}; b{12,-6,5}
.@{-1,9.7};b{3,-4,11}
.d{3,0,8}; b{4,-4,0}
.d{6,72}; b{3,9,-5}
10.@{0,0.17}; b{16,9, -7}
11. @{-5,6,-7}; b{-9, 14, 8}
12.@{7,4,5}; b{10,-4, 9}
13.43,4,6}; b{12,9,-10}
14.d{5,5,4}; b{-1,2,-8}
15.@{11,9,-7}; b{7,8, 9}
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2.3. Vector product

A vector product of a vector d_by the vector b is a vector ¢

which is denoted as [ﬁ, 3] and satisfies the following conditions:

a) |¢] = It_i||B| sing, where ¢ is an angle between these two
vectors, 0 < ¢ < m;

b) ¢Lld and €L bif d and b are not collinear;

¢) Ifthe condition b) is fulfilled then we see the rotation from the
end of vector € from the vector @ to the vector b by the angle ¢ going
counter clock wright.

Remark As in the case of a scalar product, if the vector @ or/and

the vector b equals 6, then the angle ¢ is not defined and can be
considered to be equal to any unspecified number.

A

—
C

=

)/ @

al

The criterion of vectors’ collinearity

The vectors @ and b are collinear if and only if [Ei, B] =0.

Proof Let us firstly introduce ¢ = [d, B] =0. Then |¢| =
= IE’I|B)| sin @ = 0. So we have |d| = 0 or |l7| = 0, orsin¢ = 0. Thus,
a= 6, orb = (_i, or ¢ = 0 or ¢ = m. In all the cases we get the same
conclusion that the vectors @ and b are collinear. Vice versa, let us
suppose that vectors are collinear. In this case we have a zero vector
among them, and then |¢| =0 and ¢ = 0, or @=0 or ¢ =m, and
then sing =0 = [¢é|=0 = ¢=0.m

} > > - —>

From this criterion [d, @] = 0.
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In the picture which illustrates the definition of a vector prod-
uct, a parallelogram is depicted. It is clear that if we denote its total
area as S then

This property is called the geometrical sense of a vector product
modulus.

There are some useful expressions coming out from the def-
inition.

The main properties of a vector product

1) [q, B] = —[B, @] — (anticommutativity);

2) [aq, B] = ald, B] — (linearity of multiplication by a scalar);

3)[d, b + €] = [d,b] + [d, €] — (linearity of addition).

Remark The property 1) makes the properties 2) u 3) correct
for the cofactor b as well. So a[ﬁ’, B] = —a[B, fi] = —[aB, ?i] =
[ﬁ’, aB], ie. [ﬁ’, aB] = a[?i, B]

From these properties we can make a formula for the vector prod-
uct via the coordinates in the Cartesian coordinate system. Let us present

d=ad+ayj+ak and b=b,i+b,j+b,k.

Here the vectors L_,’]—,’E are the unit vectors — the vectors that
have a length equal to 1. They are used to show the directions in
space (it is mostly used when we have the collinear vectors: the
unit vectors show their directions). The formula for calculation of
the unit vectors is

&

X = 1
where % is a unit vector, which is collinear to the given vector X.
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Then the following chain of equalities is true:
[@ D] = [, + ayj + a,k, byl +b,j+b,k| =
= ayb[i, 7] + achy [L]] + ayb,[L K] +
+ayb[7, 1) + a,by (7,71 + ayb,[j, k] + a b, [k, 7] +
+ a,by [k, j] + a b, [k k] =
= (ayb, — a,b, )i — (axh, — a;b,)j + (axh, — a,b)k.

It’s not so hard to conclude that the last expression in the chain
above can be presented in a following way:

(ayb, —a, y)? — (ayb, — a,b)j + (axby — aybx)ﬁ =

ay ClZ ax ay — .. .
b [ | b, tlp b | k, and that coincides with eval-
y bz x Py
uating the determmant by the first row
i J k
ay ay af.
by by, b,

Thus, finally we have

~
~y
&

[ﬁ,z] =la, a, a}
by b, b,

Remark We shouldn’t be afraid of the fact that we have vec-
tors standing in the first row. We multiply them by numbers and
not by each other.

Practice Russian
BéxTopHoe npousBenénme — a vector product
EnmHu4HBIA opT — a unit vector

Review questions

1. Formulate the properties of a vector product

2. How do we calculate the vector product if the vectors are given
in the coordinate form?

3. What is a result of the vector product — a vector or a number?

4. What is a criterion for vectors’ collinearity?
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Practical task

1. Find the vector product of vectors @ and b given in the prac-
tical task 2 of the previous chapter.

2.4. Triple scalar product

We have already got acquainted with both ways of multiplication
for the case of two vectors. How should we act when we have three of
them? The answer is hidden in the triple scalar product.

A triple scalar product of 3 vectors a, B C is a scalar value
v = (a@[5,3)

If we have the following expressions in the Cartesian system:

d=ad+ayj+ak, b=bi+b,j+bk, €=cid+cyj+c,k,
then we get the following formula for V-

ay a, a,

b, b b, b b, b
V=a,|? Zl—a,| ¥ Z+a,|* Y| =|bx by by
*ley, ¢ Ve, ¢, Zlexy ¢y Y
Cx Cy €

So we have the following determinant.

a, a, a,
V =|bx by byl
Cx Cy €

Let us calculate this determinant by the third row:
a, a,
b, b,

ay 4z

V=Cx _Cy bx bZ

a a —
+c, bz bi:|=([?i,b],c).

This equality shows that ( @, [B, ¢)) = ([a, l_;], ©) and putting the

‘square’ brackets inside the ‘round’ ones doesn’t influence the result. So
we have finally:

V = dabé.
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Vectors’ coplanarity criterion

The three vectors @, b, ¢ are coplanar if and only if their triple
scalar product equals zero: @b¢ = 0.

Proof If the vectors @, b, € are coplanar, then they are linearly
dependent = then the rows of the determinant are also linearly depend-

ent = @b¢ = 0. Vice versa, if @b¢ = 0, the rank of the determinant’s
matrix is less than 3 = its rows are linearly dependent = the vectors

@, b, € are linearly dependent = these vectors are coplanar.
The vectors @, b, € are called the arguments of triple scalar product

The properties of the triple scalar product can be easily got out
of the determinants’ properties:
1) Linearity for each argument. For example,

(d, + d,)b¢ = d,bé + d,b¢,
For each scalar a the following expression is true:
(ad)bé = d(ab)é = ab(ad) = a(abc);
2) Anticommutativity for each argument. For example,
db¢ = —bdc = béd = —¢bd = - , etc.

The geometrical sense of a triple scalar product

Let the vectors @, b, ¢ be non-coplanar and let them be put from
one starting point A. Let us denote: }, is the cubage of the parallelepi-
ped that is based on these vectors. Then

.
V, = |abd|.

/ /

=18
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Indeed, V, = S,H, where S, is a total area of a parallelogram
lying in the basement of a parallelepiped, and H is its altitude. On the
other hand, from geometrical properties we have: H = |¢||cos a| and
Sp = |¢_i||_l;| sin ¢ (we took |cosa|, not cosa — considering the fact
that a can be also more then 90| and, however, the length of an altitude
should be a positive number). Thus, V}, = |¢_i||3| sing - |¢||cos a| =

|[@B]| - [€llcos a| = ||[@,B]| - I€| cos «| = |([@, b, )| = [abe].

Remark In the case when @, b, ¢, are coplanar, the parallel-
epiped transforms into a flat figure and we can’t speak about its
cubage. However, if we say that in this case its cubage is equal to

zero, then the formula V,, = |?i§i"| is also true.

Practice Russian

Cmémannoe npousBeaénue — a triple scalar product
O0BéMm — cubage

IInomane — total area

Review questions

1. How do we calculate the triple scalar product?

2. What are the main properties of a triple scalar product?

3. What is the main geometrical application for a triple scalar product?

Practical task

1. Find the cubage of a parallelepiped based on the following
vectors:

{1,0.3}; b{2,4,-1};¢{-1,2, 5}
(~1,2.5}; b{7,3,0}; ¢ {4,5.3}
{4,5,3}; b{-6, 5, 1}; ¢{2, 8, 10}
(2,8,10%: b{9,2,-3}:¢ {1,49}
{1,4,9}; b{-2,7,3};¢ {-8, 10, 4}
-8,10,4}; b{12,-6,5};¢{-1,9,7}
-1,9,7}; b{3, -4, 11}; ¢{3, 0, 8
.d{3,0,8); b{4,-4,0}; ¢{6,7,2}
.@6,7,2}; b43,9,-5); ¢ {0, 0,17}
10.@{0, 0, 17}; {16, 9, -7}; ¢{-5, 6, ~7}
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11.4{-5,6,-7}; b{-9, 14, 8};¢ {7, 4, 5}
12.@ {7,4,5}; b{10,-4,9}; ¢ {3, 4, 6}
13.4{3,4,6}: b{12,9,-10}; ¢ {5, 5, 4}
14.d@{5,5,4}; b{-1,2,-8};¢ {11,9, -7}
15.@{11,9,-7}; b{7, 8,9}.¢ {4, 5, 3}

2.5. Planes. Plane equation, mutual location of planes

We would consider that the Cartesian system Oxyz is fixed in space,
and the coordinates of points, vectors, etc. , are given in that system. Let us
investigate a plane P. Let the vector 7i = {4, B, C} # 0 be orthogonal to
that plane (see the picture) — it is usually called the normal vector. Let us in-
troduce the point M (X, Yo, Zo) € P. In this case it’s obvious that the point
M(x,y,2) EP & 1 L MM & (i, MyM) = 0. If we put the last
equality in the coordinate form, we get

|A(x—x0)+3(y—J’0)+C(Z—Zo) = Ol- (%)

The equation (*) is called the equation of a plane going through
the point My (xg, Yo, Zo). So only the coordinates of the plane P satisfy
the equation (*) (and they’re unique!)

The inverse statement is also true: for any unspecified numbers
X0, Yo» Zg, and for the numbers A, B, C (if they are not equal to zero at
the same time!), a set of points that satisfy the equation (*), fills the
plane coming through the point My(xy, Vo, Zy) and orthogonal of the
vectorn = {4, B, C}.

We open the brackets in the equation (*) and get

Ax + By + Cz — Axqg — Byy — Czy = 0.

Let us introduce D = —Axy — By, — Czy. Then the equation (*)
can be put down in the form

Ax+By+Cz+D = 0.

And the inverse statement: if we have the equation Ax + By +
Cz + D = 0, where not all of the numbers 4, B, C are equal to zero. First

of all, this equation has solutions. Indeed, let us suppose A # 0. Then,
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for example, the numbers x = —D/A, y =0, z = 0 satisfy this equa-
tion. The other similar cases 0 you can investigate yourself. And now let
the three numbers X, ¥y, Zo be its solution. That means Ax, + By, +
+ Czy + D = 0. In other words, D = —Axy — By, — Czy. We put the
value of D into the equation and get: Ax + By + Cz — Axyg — By, —
Czy, = 0. After getting the common factors we put down A(x — x,) +
+B(y —yy) +C(z—2) =0, ie. the equation of a plane going
through the point My(xg, ¥o,2¢) orthogonally to the vector M =
{A, B, C}.

So any plane can be given by the equation Ax + By + Cz+ D =
0. And vice versa, any equation of a type Ax + By + Cz + D = 0 with
a condition that not all from the numbers 4, B, C are equal to zero, de-
fines a plane in space.

Ax+By+Cz+D =0, where A>+B?+C?+0

So that is the reason why the equation is usually called a general
plane equation. The expression A% + B? + C? # 0 is a short version of
the fact that not all of the numbers 4, B, € are equal to zero.

At last, we once again remind you the geometrical sense of
the coefficients 4, B, C: the vector 7 = {A, B, C} is orthogonal to
the Ax + By + Cz+ D = 0.

Remark A vector 7 is also called a normal vector to the plane
P. It is clear that it doesn’t matter which vector should be chosen
for the plane equation. All those vectors are collinear and, therefore,
they are orthogonal to the given plane. It also has its reflection in
the fact that if we multiply the plane equation by any non-zero num-
ber , we come to the equivalent equation,i.e. to the same equation
of that same plane.

As the plane is given in a unique way by its normal vector and a
point, in further explanations we would denote a plane as (7, M).

Mutual location of 2 planes in space

There are only two variants of mutual location for 2 planes in
space: intersection or parallel planes.

A pair of parallel planes
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Let 71y = {4,B,,C1}, M;(x1,¥1,2z1) and 1, = {43, B, (3},
M3 (x2, Y2, 22).

Then (1y,M;) | (M3, M,) & 1, and N, are collinear &
there is to be found such a number « that m, = amn; & A, =

aA,,B, = aBy,C, = aly. If we remove a from those equalities, we
finally get a proportion:

A, By G
A1 Bi G

The same condition can be put down in the other way: [1;,1;] =
0. It is also can be put down in the following form:

A1 By Gy _
Rg (Az B, Cz) =L

However, there is also a case of coinciding planes. The conditions
above are also fulfilled when the planes coincide. So, in fact, we deal with
one plane. The equation for one of the planes has a form A;x + Byy +
Ciz+ Dy =0, for the second plane adx + aB,y + aCyz + D, = 0.
Those planes coincide if, for example, the coordinates of the point M; sat-
isfy both equations. That means, two equalities are true: A;x; + B;y; +
Ciz1 + Dy =0 and ad;x; + aB1y; + aCyz; + D, = 0. From the first
equality we have A;x; + B;y; + C;z; = —D;. The second can be put
down as a(A;x; + Byy; + Ciz1) + D, =0. Thus, we get —aD; +
+D,=0 & D, =aD,, ie., D,/D; = a. Finally,

A, B, C, D,
A, By ¢ D
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is a criterion of coinciding planes. 1t is equivalent to the expression:

Ay By Gy Dy _
Rg (Az B, G, Dz) =1

If we have

4 _By_G Dy
A, By ¢ D

Then we get the criterion for the parallel planes.

Intersection of planes

-
W"z
-
/\ n,

From the analysis above we can conclude that the criterion of 2
planes’ intersection has the following form:

Adﬁ@)_
R#@&@‘Z

We should notice that the planes are perpendicular to each other
in the case when their normal vectors are perpendicular to each other
(and in that case only!) That means (71;,7,) = 0 or, in coordinate form,

A4, + B1B, + (G,

n,
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Practice Russian

IInéckocrs — a plane
Iepeceuénne - the intersection

Review questions
1. How does the general equation of a plane look like?
2. How many types of mutual locations does exist for two planes?

Practical task

1. Write an equation of plane that contains point A, if vector AB
is a normal vector to that plane. Coordinates of points A and B are writ-
ten in the task for a paragraph 2.1.

2.6. Straight line equation

Let us define a straight line L in space.

/
M(x,y,z)

My (xq, Yo, Zo)

Any vectorq = {I,m,n} # 0, which is collinear to L, is called a
direction vector of L.

Parametric straight line equations

The point My(xg, Yo, 20) € L, and G = {I,m,n} # 0 is its di-
rection vector. Then the point M(x,y,z) € L so the vectors g and
W are collinear. Thus, we can find such a number t,,, for which
the following equality is true: MoM = £,,q.

On the other hand, it’s obvious that if 7 is any unspecified number
and W = tq, then the point M € L. So the straight line L consists
only of those points M, for which the following equality is fulfilled:

—

MoM = tl—i s
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Where the number t ‘runs along’ the complete number scale. This
expression is called a vector form of the straight line equation.
We can put it down in the coordinate form:

{x —x0,y — V0,2 — 2o} = {tl, tm, tn}.

If we set the coordinates of vectors in the right-hand part and
left-hand part of this equality, equal to each other, we get x — xy = tl,
Yy — Yo =tm, z— zy = tn. Finally, we can put down these equalities
as a system of equations

X =xy+tl,
y:}’0+tm; tER,
Z=2zy+ tn,

And this system is called parametrical equations of a straight line.
The title is given thanks to the variable ¢, which can be investigated as
an independent parameter, which can take any number values. If we
give a concrete number to the number t,e.g. t =1t;, we get three
numbers x; = xg + t1l, y1 =y +tym, z; =z, + t;n, and those
numbers are the coordinates of the point M; (x4, y;,2;) which lies
on the straight line L. If we take all the values of t consequently, every
time we will get the coordinates of the points lying on the straight line L
and so we won’t miss any of those points. So on the straight line L there
are only those points whose coordinates satisfy the parametric equations
with different values of ¢.

Canonic straight-line equations

We exclude the parameter t from the parametric equations of a
straight line (in all of the three equations). So we get
t=(—-x0)/l, t=0—yy)/m, t=(z—2y)/n. Thus, we have
a double proportion

X—Xo YV—Yo_ Z—Zp
l m n ’

And only the coordinates of the points on the straight line L sat-
isfy that proportion. This double proportion is called the canonic equa-
tions of a straight line.
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Remark In the canonic equations of a straight line you can notice
some expressions of the type (x — x;)/0, for example, whenl = 0. We
should undertand that there is no division by zero actually. We only mean
that x = x,. Itis especially clear in the parametric form for the case when
I = 0. In a geometrical sense, this situation means that all the straight line
lies in the plane which is defined by the equation x = x,.

General equation of a straight line
Let two planes be given in space:

Pl: A1X+Bly+C12+D1=0,
Pz: A2x+Bzy+sz+D2=O.

Further we will see that all those planes are intersected by the
common straight line and define that straight line only in the case when

4, B, 61)_
rk(Az B, G)=%

When this condition is fulfilled, then the point lies on the straight
line of two planes’ intersection if and only if the coordinates of the point
satisfy both the equation of a plane P; and the equation of a plane P,.
In other words, they should satisfy the system

{Alx + Bly + Clz + D1 = 0,
Azx + Bzy + sz + D2 = 0

This system is called a general equation of a straight line. They
also say that the straight line is defined by « pair of intersecting planes.

Remark The common equation of a straight line contains a
widest variety of combinations as an endless amount of planes can
go through the given line. Any pair of them defines this straight line.

Practice Russian
Hpamas — a straight line

Review questions

1. How do we formulate the parametric equation for a straight line?
2. How do we formulate the canonic equation for a straight line?
3. What is a general equation of a straight line and how do we get it?
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2.7. Mutual location of straight lines and planes in space

As a plane or a straight line are given by their normal vector (or a
direction vector correspondently) and a point, then we would further de-
note a plane as (7, M), and a straight line as (q, M). (Probably, we will
use some special indexes for them).

A pair of straight lines in space

Two straight lines in space can be parallel or they can intersect
each other and they also can be crossed.

a) It is clear that the parallelism of two straight lines (g1, M;) u
(42, My) is equivalent to the fact that their direction vectors g; and
g are collinear.

Let q4 = {l;,m;,n;} and qy = {l,,m,,n,}. The collinearity
criterion can be presented in several equivalent forms:

— =~ ll my ny ll mq Tll)
=0 © —=—=— & R =1.
(41, 9-] Lom, o, g (12 m, n,

If there are two parallel lines then we can choose for them a
common direction vector ¢ = {l,m,n}, that is collinear to the vec-
tors ¢, and ¢, or it can even coincide with one of them. Then all
the conditions are fulfilled in a trivial way. We should only inves-
tigate the question about coinciding or non-coinciding straight

lines. However, it is absolutely obvious that [?i, Mle] =0-isa
condition for coinciding straight lines, and [(_i, M1M2] + 0 is a cri-
terion for parallel lines.

B) Two straight lines intersect only in the case when ¢4, g, and

M;M, are coplanar but q; and q, are non-collinear. It means that

triple scalar product is equal to zero: §1G,M; M, = 0 but [g,g,] # O.
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With the help of logical element A (we read it as ‘and’), we can put
down this condition in the following form:

(@142M:M;, = 0) A ([q1, 2] # 6)

C) Let us remind that two straight lines are called the crossing
lines if they are not parallel and they don’t intersect each other.

We can deny either parallelism or intersection by a unique condition:

—_—

414 MM, # 0

Indeed, this condition guarantees the impossibility of intersection as
for the intersection we need the following formula to be fulfilled:
?ilfizm = 0. And, besides, from the expression comes that the vectors
g1 and g, are non-collinear and so the straight lines can’t be parallel.

Remark The condition for two straight lines to be parallel in
space: it is necessary and sufficient for their direction vectors to be
perpendicular to each other: (¢;,92) = 0 or

lllZ + mym, + nn, = 0.
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Straight lines and planes in space

A straight line in space is either parallel to a plane, or intersects a plane.
A parallelism means that ¢ = {I,m,n} L n = {4,B,C}. We can
tell in other words, that

Al+Bm+Cn=20

_—
q
y /

That also includes a private case when the whole straight line is
situated inside the plane.

The intersection is, in fact, denying of a parallelism. That’s why
we can put down the criterion of a parallelism in a following form:

[Al+ Bm + Cn # 0]

/)

We can tell that the criterion for perpendicularity of a straight line
and a plane is a fact of collinearity of vectors ¢ and M, and that can be
written in the form of a double proportion:

=]

A_B_C
Il m n
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yd /

2.8. Useful applications

In this section we would give the basic examples of solving prob-
lems which investigate straight lines and planes in space.

1) There are two given points My (xq,y1,2,) and M, (x,, y,, Z5).
Put down the canonic equation of a straight line that comes via these
points.

Solution Asboth points M; and M, lie on one straight line, then
the vector M M, = {x, — x1,V, — y1,2Z, — Z,} can be defined as the
direction vector. We can choose any of these two points as a point lying

on a line. For example, we take M;.

M, M,
————

So we get

X=Xy Y—=V1 _Z—Z

Xo—=X1 Y2—=V1 22— 21

2) Put down the equation of a plane which goes via the three
given points My (x1,¥1,21), Ma(X2, 2, 22), M3(X3, 3, 23) (the points
don’t lie on one straight line).

Solution The point M(x, y,z) belongs to a plane which is
defined by the three given points if and only if the vectors M M, =
{x2 =21, Y2 =y, 22— 21}, MiMz={x3—x1, y3—y1, 23— 2}
and MiM = {x — x;, y — y1, Z — z;} are coplanar.
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Thus, M{M, M;M3z M;M = 0, and that means the following de-
terminant is equal to zero:
X=Xy Y=V Z—Z3
Xp—=X1 YV2—=YV1 Z2— 21
X3 —X1 Y3~ V1 Z3 23
If we calculate this determinant by the first row then we get the
general plane equation after some simplifications

=0.

X—=X1 Y=V Z— 2
Xo—=X1 Y2—=YV1 22— 21
X3—X1 Y3—Y1 Z3— 21

=0

3) Find the distance between the point My (xg, yo, Zo) and a plane
P: Ax+By+Cz+D =0.

Solution_For the investigated distance let us introduce the deno-
tation p(My, P). Let now M;(xq,y1,21) be any unspecified point of a
plane. Then we use the formula where 1 = {4, B, C} is a vector which
is normal to the surface P.

|(7, My My)| _ |A(xg — x1) + B(yo — y1) + C(zp — 71)|

(Mo, P) = =
P In VA® + B* + C*

Mgy A
A‘LP(MO, P) n |
P
M;
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If we open the brackets in the numerator of this fraction and if we
consider that D = —A4x; — By; — Cz,, (as the point M; belongs to the
plane), then we get the final result:

|Axg + Byy + Czy + D]
VAZ + BZ + (2

p(MOIP) =

4) Find the distance between parallel planes

Solution As the planes are parallel, then as a normal vector we
can take the same vector m = {4, B, C}. Then let the equations of planes
be PiiAx + By +Cz+D; =0 and P»:Ax+By+ Cz+ D, = 0. We
denote the distance between those planes as p(P;,P;). This value is
calculated as the distance between the unspecified point My € P; and
the plane P,. However,

|Axy + Byy + Czy + D, |
VA% 4+ B + C*
And as M, € P, then Axy + By, + Czy = —D,. If we put that
into the formula above, we get:

p(My, Py) =

|D, — D;|

(P Py) = el
P T T R 1 O

These are only a few algorithms for solving problems with
straight lines and planes. However, in other cases it is much better to
investigate the conditions of the problems thoroughly than to look for
ready step-by-step solutions.

Creative task We have come to the end of the chapter. Show your
creative talents again like you have already done after the end of previ-
ous chapter! Now your theme is ‘Analytical geometry’. You can choose
any forms you like, just enjoy the process!

This task is not necessary - however, we hope you will have much
joy and fun doing this task!
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3. LINEAR SPACES AND OPERATORS

This chapter contains very important concepts of linear alge-
bra. However, here you will meet less practical tasks and less review
questions. Your main aim is to learn all the basic properties de-
scribed in each paragraph. You should be ready to answer about
them to your lecturer orally or in written form. This chapter con-
tains a lot of definitions, properties and formulae so the authors
leave the material for your self-control so you should learn to un-
derstand the necessary information, to analyze it and to prepare
well-structured answers.

3.1. Linear space

A linear space _# is a set of elements @, b, ¢, ..., X, y,Z, ... (the

type of those elements is unspecified) for which we can introduce two
operations: addition, which is denoted by the sign +, and multiplication
by a scalar (usually denoted as - but very often we don’t put any special
signs for it, like, for example, in the expression ab).

We also have to check that Va €.Z Vb €.Aa+ b €.4 and
Va € RVa € £ (aa €., i.e. we have the elements from the same
space -Zas the results of both operations (it is called an_operation clo-
sure). Besides, the following axioms of linear space should be fulfilled

for any elements @, b, ¢ and for any numbers o, [3:

1) @+ b = b + a - the commutativity axiom,

2) (C_l + E) + ¢ = a+ (b + ©) - the associativity axiom,

3) There is to be found such an element @, which is called a
neutral element, that for each element @ €_# the following equality is
fulfilled: @+ 0 =a;

4) For each element @ in the set - we can find the inverse
element b, sothat @+ b = 6;

5) (ap)a = a(pa);

6) (a+ pB)a = aa + Ba;

7) a(@+ b) = aa + ab;

8) la=a. m
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Remark 1 The elements of linear spaces are often called vec-
tors, and the space itself is sometimes called a vector space. The
numbers are also sometimes called scalars.

Remark 2 'We should notice at the very beginning that any set
is not a linear space yet until the rules of addition and multiplication
by a scalar are not defined for that space. This rules are, in fact,
created by ourselves and they can be formulated in any unspecified
way. However, it is strictly necessary for those rules to satisfy the
conditions of closure and axioms of linear space.

One-minute task Do you know any other sets (except the set of vectors
that have just been given as an example) that can be called linear spaces?

Simple properties of linear spaces
Let_#Dbe a linear space. The properties formulated below, can

seem obvious to us in the cases when we investigate some well-known
objects, for example, geometrical vectors or matrices. However, we
shouldn’t forget that we work with an abstract linear space and all we
have is 8 axioms that are true for each case of linear space. For example,
we shouldn’t look inattentively at the operation of addition and the sign
‘+’. In linear space it is just an action which can be denoted in different
ways, depending on the case. For example, the sign for the operation can
look like: , *; ~; @;9; @, orin some other ways.

So let us come to the properties:

1) There is only one neutral element in the linear space

Indeed, if @, and 0, are both neutral elements, then 8, + 8; =
0, as 0, isaneutral element; 8, + 8, = 0, because 0, is a neutral
element. However, using the commutativity axiom, we get 8, + 8, =
6, +6, = 06, =0,. As the neutral element occurred to be unique,
we would denote it as 0 , and we would call it zero (or zero element).

2) Each element @ in linear space has a unique inverse element.

Indeed, let us suppose that by and b, are the inverse elements to
a. Then a+b; =0 and @+ b, = 0. The sequence of equalities
shows us that

El=51+6=51+(ﬁ+52)=(El+ﬁ)+52=(ﬁ+51)+52=
=_0+EZ=EZ +6=52.8051=Ez.
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So the inverse element turned out to be unique and we denote it as
(—a). If we take the commutativity axiom, we get the following law: if a +
+(—a) =0, then (—a) +a = 0. Thus, a is the inverse element for
(—a). If we recall the denotation of the inverse element, we get@ = —(—a).

3) The equation X+ @ = b in linear space for every @ and b
has a solution, and this solution is unique.

Firstly, we should notice that (E + (—a)) +a=b+((-a)+
+ ﬁ) =b+0=>b.So X = b+ (—a) isasolution of this equation. Now
let us take X, for its solution. Then X, + @ = b. Now we have the follow-
ing expression: (Xg + @) + (—a@) = b + (—a@) = X + (ﬁ + (—ﬁ)) =
=b+(-a) > Xy+0=b+(—a) and, finally, Xy = b + (—a).
So we have the solution, this solution is unique and equals b + (—@).

According to the definition, we take b —@ = b + (—a) and call it
the difference between the elements b and @. The operation ‘(=) we call
subtraction. By the way, @ — @ = @ + (—a) = 0, which is rather obvious.

Remark In a similar way, we have the unique solution of the
equation @ +y = b and this solution is an element ¥ = b — @.

4) In a linear space for each element @ the following equality
is true: 0-a=0.

The unique solution of the equation @ + X = @ is obviously X =
0. On the other hand, we have

a+0-a=1a+0-a=(1+0)ra=1-a=a.

Thus, 0@ is also a solution. So 0-a = 0.

5) In a linear space for every number a the following equality is
true: a-0 = 0.

The unique solution of the @ -0 + X = a - 0 is, obviously, X =

0. On the other hand,
a0+a-0=a-(0+0)=a-0.

So a-0=0.

6) Ifa-a=0, then a =0 or/and @ = 0.

If @ = 0, then this property comes from the property 4). Let us
suppose that a # 0. We multiply both parts of the equation « @ = 0
by the number 1/a. We getthat 1/a - (a @) = 1/a - 0. According to
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the property 5) the right-hand part of this equality equals 0. In the left-
hand part we have 1/a-(a-a@) = (1/a-a)-a=1-a=d. So we
have @ = 0.

7) (—1)-a@ = —a for each element a.

Indeed, the element —a@ is a unique solution of the equation
a+x = 0. On the other hand,

a+((-1D-a)=1-a+(-D-a)=1-1-a=0-a=0.

Thus, (—1)-a = —a.
From this property we get the other rules of working with signs.
For example,

(D' =D (-DD=(-D-(-D) a=1a=a

Or(—1)(—a) =(-1)- ((—1) -ﬁ) =a and so on.

So the rules for the signs are just the same rules we got used to
study at school.

8) ((a # 0) A (a@ = ab)) = (a = b) - the first rule of simpli-
fication

We have an equality: o@=ob © a@a—ab=0 <
b

©a@— b)=0.Andasa #0, then a—b=0 & a=b.
9) (@ +0)A(aa = pa)) © (a=p) - the second rule of
simplification.
We have an equalityy aa@a=fa © aa—-pfa=0 &
o (a—B)a=0.Andasa@ # 0,thena—B=0 & a=.

Remark From the proved properties we can conclude that in
the unspecified linear space we can add and multiply the elements
by a scalar exactly as in the geometrical vectors’ space. However,
the types of a linear space’s elements can be different. In the unspec-
ified linear space we don’t have any geometrical factors or clear ev-
idence. That makes the difference of investigation for linear spaces.

History is a great teacher! We have just learned the term ‘zero ele-

ment’ — and would you like to learn how old is the number ‘zero’? By 1770

BC in Ancient Egypt zero was used in the shape of the hieroglyph called nfi-’

which looked like a heart connected with trachea — that hieroglyph meant
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‘beautiful, good’. It was used to indicate the base level in drawings and so all
the distances were marked above or below this sign. In Pre-Columbian Amer-
ica different civilizations had different counting systems; the earliest date that
was drawn on the ancient stela, was 8-th December, 36 BC. It is interesting
to learn that ancient Maia used the same denotation for zero and infinity as it
meant ‘the beginning’, ‘the main cause’. In Ancient Greece zero wasn’t con-
sidered a number for a long time — as well as in the Medieval Europe it wasn’t
a number for a long time. However, still there are discussions whether the
modern symbol 0 came from a Greek lettet ‘0’ — ‘omikron’ — or from a sign
in Ancient India which looked like a large point or a circle painted inside. In
India that symbol was firstly written in 876 AC; zero as a number was called
sinyah which meant ‘emptiness’, and the symbol described above was called
‘Sinya-binduh’ — ‘the point of emptiness’. From India via the Arabian coun-
tries this number came to Western Europe.

Fig. 1 One of the ancient Maia’s drawings depicting a zero
on their counting system — ‘an empty shell’

Practice Russian
Jlunéiinoe mpocTpaHcTBO — a linear space

3.2. The concept of an operator in linear space

Let _# be a linear space.

The operator U from £to .~ (we put it down in a following
way: U: £ — _£) is any rule, where for each element X €. a con-
cretely defined element y €. is put in accordance.

Thus, an operator is an action or a set of actions that we should do with

the element X (according to some special rules) to get the element y.

We call y the image of X, and X is a pre-image of Y while the
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oprator U is in action. The fact that the concrete element y (and y
only) is an image of a concrete element X (and X only) is put down
as an equality: ¥ = U(X). The operator makes an element X of a linear
space to the element y of that same space. This can be presented as a
scheme:

We have the vector X at the input and a vector ¥y at the output.

Let us define the basic ‘arithmetic’ rules for the operators.

Addition The operator W is called the sum of operators V
and UW=V+U), if Vx L

W@ =V®+ U®.

Multiplication by a scalar The operator V = oU, if
VXeX
V@) =aU ).

A product of operators The operator W =TUV is called a prod-
uctof operators ¥ and U, if VXeL

w @) =U@ (X)).

This equality should be interpreted in a following way: firstly the op-
erator V influences the element X; we get the element y = V() as the re-
sult; then Yy is influenced by the operator U, so we get z = U(Y). So W
(xX) =z

We can illustrate it by the diagram:

X z
w

A product of operators has an associativity property. The

equality (WU)V = W(UV) is true for any three operators. On one

hand, Vx €.
(W)@ = w(v@®) =w (U(v@®))
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On the other hand, we get
(W)@ = w(Wn®) =w (U(V@))

So we get the same result. That’s why (WUW)V = W(UV). Ac-
cording to that, we have no need to put any brackets.

The identity operator_J is defined by the rule: vx e Z (I (%) =
X). For the zero operator O we have arule: VXe_Z (0 (x) =0).
3ameTuM, 9TO TOXACCTBEHHBIM orepaTop in the process of operators’
multiplication plays a role of a ‘pivot’, i.e. V X € £ ((UT) (X) =
=U(I(®) = U). Thus, UT = U. Inasimilar way we get IU = U.

The operator U is called the inverse operator for the operator V
if vu=uv=1.

The operator that has an inverse one, is called the invertible op-
erator. It is clear that this term can be used as a pairwise one: if the
operator ‘U is the inverse operator for V, then, vice versa, V is an inverse
operator for U.

According to the associativity rule, an operator can have only one in-
verse operator. Indeed, if U4 and U, are inverse for the operator V, then

ul = 'u17 = ul(vuz) = (U1V)'112 = .7‘u2 = uz.

For the inverse operator to U we have a denotation U1,

If U and V are invertible operators then the product UV is also
an invertible operator. The following expression is fulfilled: (UV)™! =
=V Ut Indeed, UVV U =UIU ' =UU ! = 7. In a similar way
we get: VPV MUTUV =V 13y =V =7, It is quite obvious that
UH=uU and 771 =17.

The degree of an operator
The multiplication operation allows us to introduce the concept of the

operator’s degree. The operation of operators’ multiplication allows to intro-
duce the concept of operator’s degree. Let U be any unspecified operator and
let n > 1 be a natural number. Then, using the definition, we get
U, n=1;
ur=juu..u, n=2.

n
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According to the definition, we suppose that for any operator U° = J.
We can further introduce the negative degrees but we can do it only for the
invertible operators. We can do it using the following algorithm: if ‘U is an
invertible operator and the integer number n < 0, then we suppose

ur = (U™,

It’s not hard to check that for every pair of integer numbers n
and m the following equalities are true: 1) U™™™ =
= urum; 2) (u™)™ =U". We should only remember that if at least
one of the degrees is negative then the operator should be an invertible
one. If n or mis zero then U # O.

Wecall U and V the commuting operators if UV = VU.

For the operators of that type the following equality is true:

uv)" = u"vn.

At last, we should notice that a set of all the operators which act
in the given space, together with the operations of addition and multipli-
cation by a scalar, comprises a linear space itself. As for the operators’
product, we can tell that this operation is external for the given linear
space and doesn’t have any influence on the given linear space.

Remark We should note that the operators are also called trans-
formations, functions or functionals. Often it depends from the type of a
space where they take place. For example, a functional is an operator in
the functional space. In our book we will mostly use the term ‘operator’.

Practice Russian
OopatubIii onepaTop — the inverse operator

3.3. Linear operators

We come to the basic idea of a lecture. However, the concepts
introduced above will be very useful for the further material

The operator A: L — L is called a linear operator if 2 proper-
ties are fulfilled

1) AX+Yy) = AX) + AQ),

2) A(ax) = aAX),
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which take place for every elements X and y of a given func-
tional space and for each scalar a.

If at least one of these conditions is not fulfilled for at least one
element of a linear space or for at least one scalar, then such an operator
is not a linear operator. The operator which is not a linear operator , is
called a non-linear operator.

If the operator A is linear then A(0) = 0. We can tell that it
is a necessary criterion of a linearity. In a case when this criterion is
not fulfilled, we can tell in advance that the investigated operator is
non-linear. So let A be a linear operator and A(0) = @. As the oper-
ator is linear, @ = A(0) = A0 +0) = A(0) + A0) =a+a.
From that we get: @ =a —a = 0.

Statement Let A and B be linear operators and let o be any un-
specified number. Then the operators A + B, oA, AB, A~ (if
A1 exists) are linear operators.

You can prove this statement yourself.

Some examples of linear operators
1) A zero operator

0x+y)=0=0+0=0X) +0®),
0(x) =0=a-0 = a0(X).

1) An identity operator

IZ+y) =x+y =3 +I0),

J(ax) = ax = ad(x).

3) Let us introduce the operator A in the space R™ using the fol-
lowing rule. Let A be the matrix of the n-th order. Then for VX € R"
we take A(X) = A X. Now let us show that the operator <A is linear:

AX+Y)=AX+Y)=AX+AY = AX) + A(Y),
A(aX) = A(aX) = adX = aA(X).

4) Let us fix the vector @ in the space of geometrical vectors. Let

the operator A act according to the rule:

A(X) = [a,%],
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so this expression means that under the influence of A every
given vector is transformed into a vector product of a fixed vector by a
given vector. Its linearity comes from the properties of a vector product.
Indeed,

AX +Y) =[a,X+Y] = [dX] + [d,)] = ARX) + A,
A(ax) = [d, aX] = ald, X] = aA(X).

5) In the space &, (or &) let us investigate the operator of differ-
entiation A = d/dx. The operator acts according to the rule: if P(x) is
a polynomial, then A(P) = dP(x)/dx. The linearity of an operator
comes from the rule that says ‘the derivative of a sum is a sum of deriv-
atives’ and ‘the number can be pulled out of the derivation sign’.

There are also many examples of the operators that fulfill some
geometrical actions, like the operator A, of a plane rotation by the
angle ¢ around the point Oj; the operator Ap of orthogonal projection
to the plane P, etc., and the linearity of those operators is proved using
the geometrical concepts as well as analytical ones.

Practice Russian
Jlunéiinplii omeparop — a linear operator

3.4. A matrix of a linear operator

From this point we will consider that £ = L™ is an n-dimensional
linear space.

Let A: L™ — L™ be a linear operator. Let us fix in our space the
basis €, €3, ..., €,.Further we introduce x € L™. A vector X can be pre-
sented in this basis. Let us suggest that X = x, €4 + x,€, + -+ x, €, is a
presentation in the basis. Then, due to the linearity of A, we get:

AX) = A(x1€1 + x5 + -+ xp€, ) =
=x;A(e1) + x,A(€y) + - + x,A(e,).

The equality A(X) = x;A(€1) + x,A(ey) + -+ x,A(e,)
shows that the operator will be completely defined, i.e. we can learn the
image of any vector if we know the images of basis vectors: A(€y),
A(ey), ..., A(ey).
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Now we should note that the images of basis vectors are themselves
the elements of the linear space. So they are able to be presented as the vectors
of the given basis. Let us suppose that we already know the result of the trans-
formation for the new basis and that they have a form:

A(e1) = a;181 + az 1€ + -+ an1 8y,
A(€z) = a;,81 + ay€; + -+ + anz8y,
A(e,) = a;neq +a,e; + -+ ap,é,.

The presentation of the image j of that basis vector will look like that:

cﬂ(é]) = aljél + azjéz + -+ anjén.

The numbers a; j» Qzjyn, Qpj are the coordinates of vector
a‘l(ej) in the given basis.
A matrix A = ”a,-,-” of a linear operator A in the given basis €4,

€y, ..., €, isasquare matrix of the order n, and in its j- th column the co-
ordinates of the vector c/l(é j) for its presentation in this basis are situated.

a11a12"'a11'""11n
a21a22...a2]’...a2n

Aol : :
iy Ajp =+ Ajj--QAip

anlanz...anj...ann

In the case of a fixed basis, each operator has only one matrix, i.e.
each of the vectors A(e1), A(ey),..., A(e,) can be presented in the
basis in a unique way.

Conclusion: If we have a fixed basis in a linear space, then for
each operator we can take the corresponding matrix, i.e. a matrix
of the operator in that basis.

It is clear that for the different operators we have different corre-
sponding matrices. Indeed, if a pair of operators had the same matrices
that meant the coinciding images of different matrices. That would cause
the coincidence of any unspecified vectors’ images, i.e. the equality of
the operators.
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Remark We consider the following rule to be obvious: A and
B are equal (A = B), if Vx € L(A(X) = B(X)).

Statement 1If A is an unspecified square matrix of the dimension
n, then there is a unique linear operator A, so that this square matrix is
a matrix of this operator in the given basis.

Proof Let
a1 Qy2--Hj Ay
A1Qz2 - Q2j Aoy
A= : :
Qjy Qi+ QAjj-+ iy
anlanz...anj...ann
be a given matrix. The basis €4, €5, ..., €, is fixed. We would

introduce n vectors in a following way:

1 =011 taze; +-+ape,
2 = Q1281 + axey + -+ ape,,

Qg

’

Gn = Q181 + azpez + -+ appéy.
We have a rule that defines the action of the operator A .
If Xx=x,€q+ x,€5 + -+ x,€,, then
AX) = %191+ x2g2 + -+ X, Gn = Z-

Here it is important to tell that the operator A, with the use of a
fixed basis, puts a corresponding element Z to every element X, and Z
doesn’t depend on any basis.

Let us check the linearity of that operator. Then we introduce
y=y,e4 +y,6; + -+ y,e, and a (a is a number). So we have

X+y=(x+ty)es+ (x; +y)ez+ -+ (x, +yn)ey,

and
‘A(f + 7) = (X1 + }ﬁ)yl + (xz + }’2)52 + -+ (xn + yn)yn'
On the other hand,

‘A(i) = xlgl + xzyz + et xnyna
AQ) =y191 + Y292+ + YnGn-
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After the addition (between each other) of the two equalities
above and simplifying, we get

‘A(T) + ‘A(y) = (xl + yl)gl + (xz + }’2)52 + et (xn + yn)gn'

So AX +y) = A(X) + A(y).
Further we have

A(ax) = (ax1)gq + (@x2) g2 + - + (X)) G =
= a(x1 g1 + %292 + -+ + +xpGn) = aA(X).
The linearity is proved.
The fact that the matrix 4 is the matrix of the given operator in
the basis €4, €, ..., €,, can be proved in a rather simple way. Indeed,

é1= 1él+O§2++Oén
and so
Ae)=1-g1+0-g,+-+0-g, =91 =a,8 +
a21EZ + -t anléna
1.e.
A(e1) = a;1€81 +az€; + -+ ap€y;
and afterwards we get:
éz =Oél+1§2++06n
and so that means
A(e;)=0-g1+1-g,++0-g, =
=gz = 01361 + axey + -+ age,,
1.€.
c/‘l(éz) = alzél + azzéz + b + anzén,

and so on.

At last, the uniqueness of the created operator comes out from the
fact that the equality of matrices leads to the equality of the operators.

Conclusion In a linear space L™ for a fixed basis, between all
the linear operators and their matrices in this basis there is a recip-
rocation (one-to-one correspondence). In accordance with it, each
operator has a unique corresponding matrix, and vice versa: each
matrix has a unique linear operator, for which this matrix is the

matrix of this operator in the given basis.
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This reciprocation is denoted in a following way: A «— A.
Example Find the matrix of an operator A(X) = [d, ¥] in the ba-

sis T, ], k, where @ = a, T + ayj + a,k is a given vector.
So we have:
A®D) = [a,d + ayf + a,k, 7] = a,[i,7] + a, [, i] + a,[k, 1] =
= —ayE +a,j = AD =01+ a,j— ayE;

AG) = [ai+ ayf + a,k ] = a[ijl + a,[j,j1 + a, [k, j] =

—

=ak—a, i =>A(J) =-a,l+0j+ axE;
ﬂ(z) = [axi+ ayj + ajéjé] = ax[i, E] + ay[f,E] + aZ[E,E] =
=-a,j+al = Jl(E) =a,l—a,j + Ok.
We get the following result:
0 —a, ay

A= a, 0 —ay |.
—ay a, 0

Besides, we can tell that the zero operator O in any basis has a

zero matrix O, because

O(él)=O'él+0'éz+"'+0'én,
0(?2)=0é1+0é2++0én,=>0(—)0
O(En)=O§1+0é2++0én,

and the identity operator J always has a corresponding matrix £
which is an identity matrix.

Jj(eq)=1-e,+0-e;+--+0-¢,
J(e;) =0-e;+1-e;+--+0-€,, =>J— E
Je,) =0-e;+0-e;+--+1-¢,.
If A— A, B <— B and « is a number, then
A+B— A+B, aA—ad, AB— AB, A 1< AL
(The last one is true if the inverse operator exists).
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For example, we can state that any operator expression
aA"B™ ...C' + BHPFI .. D" + -+ yG5Qk .. T
comes into a matrix expression
aA"B™ ...C' + BHPFI ..D" + -+ yG®Q¥ ... Tt.
Example Find a matrix of an operator
A?-3AB+2B? if A— A, B B;
where

A= (é i) and B = (; (1)) are the matrices of the given op-

erators in some basis of £2.
Solution Firstly, we come to the correspondence

A? —3AB + 2B* — A* — 3AB + 2B>.

2= )G D=0 7)
2=(; DG D=5 1)
1= )G =G )
Andsowe have 42 -34B+282=(7 8)-3(*3 3)+

4 0\ _(7 6y (69 9 8 0 y S
2(23 1):(4 7)_(33 3)+(46 2)

(—54 —3)
17 6
We got the answer.

Then

3.5. The general operator equation and its matrix form

Let A: L™ — L" be a linear operator. We denote: y is an image
of a vector X mpu neiictBum omeparopa. Then the expression y =
A(x) is called a general operator equation.

Let us choose the basis e, €5,..., €,in L* . Let A = ||aij|| -
be the matrix of the operator A and the following expressions take place:

X =x.€61+x3€3 +--+xp€,, Y=Yy€1+ Y6+ -+ Y€,
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Let (e) = (€4, €3,..., €,) be row matrix of vectors; then we de-
note as:

X1 1

X2 Y2 . _ _
X=| ., Y=[". |the column matrices of the vectors X and Yy;

xn yn

Let(A(eq1), A(€y),..., A(€y)) bethe vector row matrix of the
basis vectors’ images.
If we use simple calculations, it’s not hard to show that

(cﬂ(él), c/q(éz), ey c/l(én)) = (El, éz, ey
Ay Qyz--%j-agy
/a21a22---azj---azn\

Qi Qi - Ajj - Ajp

€n) = (e)4,

anlanz...anj...ann
Soy=AX) © y@1+tyex+-+ye,=xA€)+
x,A(ey) + -+ xp,A(e,)
i}
(e)Y = (A(eq), A(ey),..., A(ey))X = ((e)A)X.
And at last, as  ((e)A)X = (e)(AX) due to the linear independ-
ence of the basis vectors, we get

Y =AX

That is the relation that we needed to get. If we have a fixed basis,
it is equivalent to the operator ¥ = A(X). That is the reason why the
operator is often given by its matrix. It is easier because the action of the
operator in this case is just reduced to a matrix multiplication.

In a full form the formula Y = AX is equivalent to n equalities

Vi = Qu1Xy T Qy3Xs + 0+ Ay Xy,
Vo = Qg1X) + @pp%X5 + o+ Qap Xy,
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3.6. Kernel, defect, image and rank of an operator

Let A: L™ — L™ be a linear operator.

The kernel of an operator A is a set of all vectors in L™ that
have a vector 0 as their image.

Usually a kernel of an operator A is denoted as: KerA. So

KerA ={x € L": A(X) = 0]}.

If KerA = {0}, then itis called a trivial kernel.

A defect of an operator A is a dimension of its kernel.

If a defect is denoted as k, then dim(KerA) = k.

The image of an operator A is a set of all its values. The image
is denoted as Im A.

Let’s try to read the formula below.

ImA={yeLl™ I3xe L"(AX) =Y)}.

Here we have just put down the fact that the vector ¥ belongs to
the kernel of the operator only in the case when it has at least one pre-
image.

The rank of the operator A is a dimension of its image.

If arank of A is denoted by the letter r, then dim(Jm A) = r.

The following important equality is true:

dim(KerA) + dim(Im A) = n.

)

k+r=n

In fact, the common approach to the definition of a kernel and the
image of the operator A can be explained in a following way. We fix
any basis in space and we find the operator’s matrix 4 in it. Then the
equation A(X) = 0 will be equivalent to the matrix equation AX = O.
In a full form it looks likea square system of linear equations with the
matrix A. The space of this system’s solutions is the kernel of the oper-
ator. However, each vector will be put down as a column of its coordi-
nates in the given basis. Each fundamental system of solutions is a basis
in the space of solutions, i.e. in the kernel of the operator. So the number
of vectors in the fundamental system of solutions is k - the dimension

of a kernel.
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The number (n — k) = rkA. The basis columns of a matrix A are
linearly independent and their number is equal to (n — k). The vector
Y € Im A in the case (and in that case only!), when the system of
equations AX = Y has a solution. Using a theorem of Kronecker-Capelli
it is possible only in the case when rkA = rk(A|Y). The last formula
means that Y should be a linear combination of basis. So the basis col-
umns are the vectors of the basis of an operator’s image, and those vec-
tors are represented in the coordinate form. The image itself consists of
any possible combinations of the basis columns. Besides, we proved that
r =rkA and we also found that k +r = n.

3.7. Transformation of vector coordinates
and operator’s matrix for the other basis

Transfer matrix

Let L™be a linear space. Let us choose two bases in this space.

(e) =(ey,ey,...,e,) u (e')=(e'y, e, ..,e',).

As (e) is a basis, then the vectors of a basis (e’) can be presented
in a basis (e). Let those transformations have a form:

el = Cllél + CZléz + -+ Cnlén'
eZ = Clzél + CZZéZ + -+ anén,

€n = C1p€1 + Capez + -+ cppén.

In the matrix form the expressions () look like: (e') = (e)C. Here

C11C127+C1j+C1p
C21C22"'C2j"'C2n

C =
Ci1 Ciz**-Cij+Cin

Cnlcnz...cnj...cnn

— is a so-called transfer matrix from a basis {e) to a basis {e’). In
the j - th column of this matrix there are the coordinates of a vector é]'-

for its presentation in the basis (e).
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For example, if
éll = Zél + Séz - 7é3,
élz = Sél + 852 + 953,

élg = 461 - 362 - ég,

2 5 4
C= ( 3 8 —3).
-7 9 -1

Remark So we see that the coefficients standing in front of the
vector €4 in all of the three equation above are now the elements of
the first row in the matrix C. The coefficients in front of the e, are
the elements of the second row in C, etc. That means that the column
of the coefficients in front of the same vector in all the equations is
a corresponding row in the transfer matrix.

then

The_transformation of vector coordinates and the operator’s
matrix in the other basis

Let(e) = (€4, @5, ..., €,) and (e') = (e}, &5, ..., €,) be two bases,
X be a vector and A is a linear operator. A vector X can be presented
either in the first, or in the second basis. The same goes on the operator’s
matrix. It can be put down in both bases. Let us denote the columns of
the coordinates of a vector X in (e) and (e’) in a following way:

x1 xi
X2 X5
X=| . u X' =72
Xn x,’l

Then X = (e)X = (e’)X'. If C is a transfer matrix from a basis
€1, €y, ...,e, to a basis e7,85, ..., ey, then (e’) = (e)C. So we have
(e)X = (e)(CX").

At last, as the vectors in the basis are linearly independent, we get

X=Ccx' | or | X'=C"'X
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Now let A and A’ be the matrices of the operator A in the corre-
sponding bases. Then on one hand, we have (A(e)) = (e)A, and on the
other hand, (A(e’')) = (e')A’. However, it is not hard to notice that
(A(e')) = (A(e))C. That’s why (A(e))C = (e')A’. And so (e)AC =
= (e)C A'. Therefore, AC = C A" & A" = C~1AC. So we got a formula:

A= C1AC

and that is a formula of a matrix transformation for the other basis.
Practice Russian
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Practical task

1) This task is not very easy but it is rather creative. You have to
create a 3x3 matrix with any numbers you like. Then you have to think
about its coordinates in the ‘old’ basis (be careful with dimensions!) and
to create a new basis. Your task is to get a matrix A' in the new basis.

3.8. Eigenvalues and eigenvectors of linear operators

Let L™ be a linear space and let <A be a linear operator in that space.

A vector X # 0 is called the eigenvector of an operator A, if we
can find such a number A that we can satisfy the equality A(X) = AX.
The number A is called the eigenvalue of a given operator when the
condition above is fulfilled.

So the eigenvector of an operator is such a non-zero vector which has
an image proportional to the vector itself or a zero image. So all non-zero vec-
tors of an operator’s kernel are its eigenvectors with the eigenvalue A = 0.

Further, when an eigenvector has an eigenvalue A, we will say that
it belongs to this value.

The properties of eigenvalues and eigenvectors.

1) An eigenvector X can’t belong to different eigenvalues. In-
deed, from ;X = A,X weget A; =A,, T.k. X # 0.

2) Letus investigate a set of all the eigenvectors that belong to an
eigenvalue A, and we add there a vector 0. All this set of vectors we
denote as Vy.We would like to emphasize once again that 0 € N, but
it is not an eigenvector.
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Let us introduce the definition of a subspace — it is a space that is to-
tally situated in the other space, whose points or elements are all situated in
the parent space; it also inherits all the properties of a parent space.

A set V; will be a subspace in L™. To prove it, it is just enough to
mention that VX € N ; we have A(X) =Ax & AX) = A)x <
AX) - AMNx=0 & (A-ANXx=0 & X € Ker(A—AJ). So
N, =Ker (A —AJ). And a kernel of an operator is a subspace (we
can tell that A(0) = 0 = A0).

NV, is usually called the eigensubspace of an operator. There is
an important property: if X € V', then A(X) = Ax € NV';. Such sub-
spaces are called the invariant subspaces of an operator.

The subspace H c L™ is called the invariant subspace of an
operator A, if from x € H we can conclude A(X) € H.m

The importance of those subspaces is in the fact that the operator
woks in them independently — it doesn’t depend on its properties in the
other parts of space.

If an operator is investigated only on its invariant subspace #,
then we will denote it as A4 and call it a constrint of the operator A
on H. So, according to the definition, we have:

Ay(@) = AX) VI €.

If vectors X1, X, ..., Xp belong to p different eigenvalues A,
Az, ., Ay, then they are linearly independent.

If an operator A has n different eigenvalues A4, A, ..., A,then
the vectors §1, Sz, ..., S, thatbelong to those eigenvalues, are linearly

independent and can be taken as a basis.

A basis that consists only of the eigenvectors of an operator, is
called the eigenbasis of that operator.

Remark Here it does not matter whether the eigenvalues of
an operator are differ from each other or not.

A matrix has a diagonal form in the eigenbasis, and the eigenval-
ues of an operator stand on the main diagonal. Indeed, if the eigenbasis
consists of the vectors §1, Sz, ..., S, with the eigenvalues A4, A, ...,
A, correspondently, then

cﬂ(gl) =}\1§1+0§2++0§n,
cﬂ(gz) = O'§1+7\2'§2 ++0§n,

cﬂ(gn)=0'§1+O'§2+"‘+)\n'§n,
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and so we have

ag=[ 0%0

The inverse property is also true: if in a basis the operator’s matrix is
diagonal, then it is the eigenbasis, and there are eigenvalues on a main diagonal.

Practice Russian
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CoocTBennbie 3HaUéHus — the eigenvalues

3.9. The characteristic polynomial and its invariance

Let us describe the general method of finding the eigenvalues and
eigenvectors that belong to those eigenvalues.

The number A and a vector X # 0 are the eigenvalue and the eigen-
vector of an operator A only in the case when X € Ker (A — A9), 1.e. X
satisfies the equation (A — A9)X = 0. If we fix a basis in the space and de-
note an operator’s matrix in this basis as A, the column of coordinates for the
vector X will be denoted as depe3 X , then, considering the fact that in any
basis a matrix of the identity operator J is an identity matrix I, the operator
equation will take a form of the equivalent matrix equation

(A-A)X =o0.

This is a square homogeneous system of linear equations. That is
why the number A will be the eigenvalue of an operator if and only if we
have a non-trivial consistent system. It is possible only in the case when
|A — AI| = 0. This formula is called a characteristic equation.

In a detailed form it looks like:

a1 —A Q12 aiz -+ Qip
a1 Q22 — A azz - Arn
asy as;, azz— A+ az, |[=0.

an1 an2 apz  App — A
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So the number A is the eigenvalue of an operator only when it is a
root of the characteristic equation.

If we look at the determinant standing in the left-hand part of a
characteristic equation, then it is not hard to understand that it turns out
to be a P,,(A) with the higherst order n:

P,(A) =(=1D"\"+ -+ |A].

This polynomial is called a characteristic polynomial. Its roots
(and its roots only!) are the eigenvalues of an operator.

Let A be one of that roots. Then, in order to find the eigenvectors
that belong to it, we get a system of homogeneous equations
(A—=2o)X = 0. The general solution of this system fills in the ei-
gensubspace V', = of an operator. Each fundamental system of solutions
will be a basis in this space. However, that same basis is investigated
when we find the eigenvectors. If we know a basis, then the eigenvectors
are known.

There is another question: does the characteristic polynomial
change when we change the basis? The answer is: no, it is the same in
all the bases. This property is called the invariance of a polynomial. Let
us prove this fact.

Let the matrix A’ be the matrix of an operator in the other basis
and let C be the transfer matrix for the presentation in that basis. Then
we get the sequence of equalities:

A" —AlI| = |CTAC —ACTIC| = |C™Y(A - AC| =
=|C7HIA =l -|C] =
=|C7YICIIA=M|=1-|A—=A]|=|A-2AI.

So the invariance is proved.

Remark All the coefficients of a characteristic equation are in-
variant in terms of changing the basis. The determinant of the cor-

responding matrix is invariant, too.
Example Find the eigenvalues and eigenvectors of a matrix.

31 2
A=<1 3 0)
2 0 3

|A—M| =0
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Let us form a matrix 4 — Al

3—-A 1 2
( 1 3—-2 0 )
2 0 3—A

After calculation of a determinant we get:
M=3+V50=3%=3-+5
We put down a matrix form: A¢ = Ap where @ is an eigenvector'

(A-=\) ¢ =0
For the first eigenvector ¢; we have:
(A — 7\,11) (O 0
3—-(3++5) 1 2 x
1 3—-(3++5) 0 <y> =0
2 0 3—-3++V5)/ ?

From this we get:
—VSx+y+2z=0
x— \/gy =0
2x —V5z=10
We know in advance that this system will have an infinite number
of solutions so one variable can be taken as a parameter. We will have 3
variables: x, y, z. Letz = ¢
We take 2 linearly independent equations of a system.

{x - \/gy =0
2x —V/5t =0
So
25y — 5t = 0;y = 0,5; x — 0,5V5¢ = 0; ngt
We get a system:

V5 V5
x =2t =
2 2
1,;0,=| 1
y=50"71 3
z=t 1

! Previously we used the denotation ‘X’ for an eigenvector; however, for
the practical tasks it is easier to use Greek letters because they are not so widely-
used as Latin ones and we can easily recognize the denotations
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Now we investigate the second eigenvector ¢,

(A-2210) ¢:2=0

3—-3 1 2 X
< 1 3—3 0 )(y
2 0 3—-3/ \z
y+2z=0 (y=-2t 0
{ x=20 ;{X=0;(P2=<—2>
z=t z=t 1
The next step:

0

N~
I

(A—Al) 93 =0

3—(3—\/5) 1 2 <x>

1 3—-(3-15) 0 y |=0
2 0 3-3-+5)/ “
Vox+y+z=0 x+V5y =0
x+Vs5y=0 ; 2x +V5z2=0
2x +V5z=0 z=t
V5 V5
= ——t _—
2 2
1, = 1
y=5t » U7 3
z=t 1
Practice Russian

XapakrepucTudeckuii MHorou1én — characteristic polynomial
XapakTepucTHieckoe ypaBHeHHe — characteristic equation

Creative task

You have just read the last chapter of a theoretical material. How-
ever, this part is rather difficult for some ‘freestyle’ creative tasks. So
we suggest you to make a crossword puzzle based on the main definition
and terms that you have met in this chapter. However, if you want to,
you can also choose any other form!
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4. SOME PROBLEMS OF A MATRIX THEORY SOLVED
IN MATHCAD PROGRAM

In this chapter we will get acquainted with the interface, main
commands and basic properties of Mathcad program and we will learn
how to use its apparatus for solving some typical problems of the matrix
theory. We will present some practical tasks and in the process of getting
the solutions of those problems, we will show use some algorithms of
work with Mathcad software. In this chapter we will not give any per-
sonal tasks; however, you can train yourselves in using the program or
to fulfil some of your personal tasks in the previous chapters according
to the recommendations of your lecturer. In our examples we will work
mostly with the graphic interface of the program.

Task 1

a) Add matrix 4 to a matrix B.

b) Multiply the result by a scalar A.
¢) Multiply the matrices 4 and B

3 2 1 1 -2 0
A=(O -1 4>,B=<4 5 7),
1 2 6 8 -9 10

A=5

Firstly, we need to find a toolbar ‘Vector and matrix’:

|Normal J; vI.»B.ri.al vIll.?l v” B I 0O

B 4=z E D

My Site ~| @co

Afterwards we type in the blank field a letter A and put down
a colon sign®. That will automatically assign a value to your intro-
duced object. After you see: ‘A:=" on the display and there appears

2 You can also use the equality sign on your keyboard to assign a value; how-
ever, it is a more multi-functional button so further we will speak about the

colon button when we need to assign some values
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a place to assign a value, you open the ‘Vector and matrix’ toolbar
and choose the sign for a matrix creation, then you choose the num-
ber of rows and columns:

Insert Matrix &=

A= Rows: 3

Colurns: 3

Matrix =]

n P T
MY mn #e% #xt By

So you put down the numerical values of the elements into a ma-
trix A. Then you should repeat the same procedure to create a matrix B:

32 1 1 -2 0 Matrix =
- EEH v EI e
a=10-14 B=14 5 7 M mn £ed A Su
1 2 6 8 -9 10
Then you should type the resulting matrix C
C:=A+B=

When you put down the equality sign (after the sum, without the
colon sign), the result will be calculated automatically.

4 0 1
C=A+B=|4 4 11
9 -7 16

Then you should introduce the coefficient A. You need to find a
toolbar with Greek symbols:

[Norrnal vI.lflu'ial i 'll[l '” B I ﬂ|
B A [i] 5= [§ <E znéa

[y site | @eo
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You type a letter A and so you assign the value for it with the colon
sign again: all you have to do is just to type a proper number. Then you
introduce the matrix D:

D:=)A

Here and afterwards or the operation of multiplication you should
use the symbol * on your keyboard. Then all you have to do is to put the
equality sign and to get the result:

15 10 5
A=5 D=XA=|0 -5 20
5 10 30

Then you have to multiply 2 matrices 4 and B. You can just put
down 4B by the symbol * we’ve just introduced. However, there is an-
other useful button on a toolbar.

You need to find a ‘Dot product’ on a ‘Vector and matrix
Toolbar’:

Matrix [ =

[z =, VIXI i H

HT m..n@‘x? Zu

So you will see a dot sign and two places to put down the two
matrices on the display. You put down 4 and B into the empty places
and then you put the equality sign. The result will appear automatically.

19 -5 24
AB=|28 —41 33
57 46 74

Your first task is to do the same algorithm with different numeric

values (you should change the elements of a matrix and a value of A.
Task 2 Calculate the inverse matrix to a matrix 4 from a previous task
You introduce the matrix 4:

3 2 1
A:=10 -1 4
1 2 6
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Then you put down the letter 4 below and click the ‘Inverse ma-
trix” button on a *Vector and matrix’ toolbar:

Matrix o B =]

i =, @xl o

MT men 3 §xi Bu

Afterwards you just put down the equality sign and you get the
ready inverse matrix!
{0424 0303 —0273%
A7 o o1z —0515 036
L —003 0121 0091 )

Task 3 Find the determinant for the matrix 4 from the previous task.
You just have to use the ‘Determinant’ button on a ‘Vector and

matrix toolbar’:
Mk N7 @
RN T

MY men %% §x3 Bu

So after cliking this command you will get the determinant sign
on the main screen and all you have to do is to put the letter 4 into the
sign of the determinant and to put down the equality sign:

|a| = -33

Solving the systems of linear equations using the Mathcad software

There are some useful commands that help us to solve the systems
of linear equations in Mathcad.

The ‘Given-Find’ unit

Helps to define the column of unknown variables. Firstly, we as-
sign zero values to the variables xo, x1, x2 (those are just the initial values
to introduce the variables and they will not influence the result). Then
we type the command ’Given’ and put down the given system of equa-
tions (no special brackets demanded). For this system we don’t use the
simple equality sign. We use the other special operator ‘Equal To’:
‘Ctrl+=" on your keyboard (it is depicted as the bold-font equality sign
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in the program) — it allows us to get the necessary result in spite of hav-
ing assigned the zero values to xi, x», x3. After that, we put down the
word ‘Find’ and put into the brackets the variable (or variables) that we
need to find. So when we write: ‘Find (x)’, the column of the results for
Xo, X1, X2 will be calculated automatically:

Given
7X0+ 4X1 — 8X2= 3
3X07 2X1 + 5X2= 7

SXO— 3X1 — 4X2=—]2

1
Find(x) = | 3
2

We can also use the ‘Given-Find’ unit for a matrix form of the
system. Then we just should define a matrix 4, a matrix B and give the
initial values for a column of variables X. Then we put down the general
equation in the matrix form: AX = B. Again, we do not use the simple
equality sign — we put down the operator ‘equal to’ (see below). Then
we type ‘Find (X)’, and the result appears automatically.

Given
7 4 -8 3
A=1[3 -2 5 B = 7
AN
5 3 4 —-12
0 1
X:=1|0 A-X=B Find(X) =| 3
0 2

‘Lsolve’ command For this command we should previously put
down the matrix 4 and the column of the right-hand parts B (we inves-
tigate the system of linear equations AX = B)
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Then we put down Isolve (4, b) and the program calculates the
result, i.e. the column vector of the solutions of the system.

7 4 -8 3
A=13 -2 5 B=| 7
5 3 4 —-12

1
Isolve(A,B) =| 3
2

‘Augment’, ‘rref’ and ‘submatrix’ commands

We use the command ‘augment’ to form the augmented matrix
that consists of the coefficients’ matrix of a system and a column of the
right-hand parts of a system.

So we firstly put the command ORIGIN:= I — that means the nu-
meration for the rows of the matrix will start from the number “1°.

Then we input the matrices 4 and B. Afterwards we create a new
augmented matrix: we may call it Au and put down: Au:= augment(4,
B). After that we put down ‘Au=" and the augmented matrix is generated
by the program.

Then we should use the program operator 7ref” that uses the
Gaussian method transforming directly the coefficient matrix according
to the method and then solving the system of equations consequently.
We create a new matrix to get a result in it: C:= rref{Au).

Then we use the function ‘submatrix’ that helps us to take a sub-
matrix of a necessary dimension from a larger matrix. We use the X letter
to get a necessary result for our column of variables X.

The common form of a command is: submatrix(M, r;, r;, c;, ¢
where M is a matrix from which we ‘cut’ a submatrix; r; r; are the num-
bers of rows and ¢;, ¢; are the numbers of columns. So 7; is the first num-
ber of a row that is going to be included into the matrix and 7; is the last
number of a row that is going to be included to the matrix. The similar
rule is for columns c¢;, ¢;. It is clear that in both cases i<j. However, there
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is an important peculiarity: in many versions of Mathcad the default set-
tings assign the number ‘0’ to a first row and a first column so the sub-
matrix command will look like that:

submatrix(M, ri.i, ¥i.1, Ci-1, Cj-1)

where i,j are the real indexes of rows and columns (they start from
1). In the screenshot below we use the default setting when the program
assigns a zero number to the first row/column.

The command submatrix for our task looks is the following:

X:= submatrix (C, 0, 2, 3, 3) (we take row 1 and 3 and the 4-th
column for our submatrix. You have already guessed that it is the last
column of answers)

The whole code looks like:

7 4 -8 3
A=[3 2 5 B:=| 7
5 -3 4 -12
7 4 -8 3
Au = augment(A.B)=(3 -2 5 7
5 -3 -4 -12
1001
Ci=rref(Au) =10 1 0 3
0012
1
X := submatrix(C,0,2,3,3) =| 3
2
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5. CONCLUSION

Linear algebra is really an important part of Higher Mathematics
Course at the university. You got acquainted only with the basic con-
cepts of this branch — the material of this textbook is optimized for one
academic semester. However, in your other courses at the technical uni-
versity, you will often use the acquired knowledge and you will also
broaden your horizons in linear algebra. Three themes presented in the
book — matrix theory, analytical geometry and theory of linear spaces —
together make the necessary basis for your further studies. Some theo-
rems are given without a proof — it is really a good exercise to try proving
them yourselves.

To get prepared for your examination tasks, it is very important
to read once again all the basic definitions and theorems given in the
book. It is necessary to clear out all the terms, formulae and algorithms
that are difficult for your understanding — do not hesitate to ask your
university lecturers to explain some ways of solving the typical prob-
lems. To check yourselves, you should answer the review questions
given after each paragraph.

Some typical problems solved in Mathcad program, are only a
small part of your possibilities. Try to get used to this software — how-
ever, you can use any other mathematical packages you like. In a career
of an engineer it is extremely important to be a highly-qualified special-
ist, and nowadays that also means using the professional computer pro-
grams and to have an ability to find the necessary information as soon
as possible.

We hope you have enjoyed reading about prominent mathematicians
and their biographies inspired you for the new researches and your desire to
learn more and more. We also hope it was interesting to fulfil the creative
tasks. If you have some ideas to share with the authors, please contact us by
e-mail: BesovaMI@mpei.ru. We also will be glad if you send us your creative
works dedicated to our main themes (you have the ‘freestyle’ creative tasks
at the end of each chapter, except the last one). Good luck in your future stud-
ies! And don’t forget about the wonderful words of a famous Russian scientist
Mikhail Lomonosov (1711-1765): ‘Mathematics is already good because it
brings your mind in order’!
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